Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Etching of Carbon Felt
2.3. APDMS Modification of E-CF
2.4. Preparation of A-CF/EP/FEP Composites
2.5. Characterization
2.6. Evaluation of Tribological Robustness
3. Results and Discussion
3.1. Characteristics of the A-CF/EP/PEF Composites
3.1.1. Modification of the Carbon Fiber
3.1.2. Morphology of the A-CF/EP Composites
3.2. Wettability of the A-CF/EP/FEP Composites
3.3. Wear Resistance of the A-CF/EP/FEP Composites
3.3.1. Effect of FEP on the Wettability of A-CF/EP/FEP Composites
3.3.2. Mechanistic Analysis
3.4. Thermal Conductivity of A-CF/EP/FEP Composites
3.4.1. Effect of A-CF on Thermal Conductivity of A-CF/EP/FEP Composites
3.4.2. Mechanistic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Shi, X.; Yang, X.; Guo, Y.; Zhang, J.; Kong, J.; Gu, J. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated heterostructured SiC-BNNS fillers, Compos. Sci. Technol. 2020, 187, 107944. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, C.; Jing, J.; Zhang, X.; Wang, C.; Liu, F.; Jiang, M.; Wang, H. Bristle worm inspired ultra-durable superhydrophobic coating with repairable microstructures and anti-corrosion/scaling properties. Chem. Eng. J. 2022, 436, 135273. [Google Scholar] [CrossRef]
- Pelto, J.; Heino, V.; Karttunen, M.; Rytöluoto, I.; Ronkainen, H. Tribological performance of high density polyethylene (HDPE) composites with low nanofiller loading. Wear 2020, 460, 203451. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Qi, X.; Yang, J.; Lei, Y.; Wang, Y. Highly thermally conductive epoxy composites with anti-friction performance achieved by carbon nanofibers assisted graphene nanoplatelets assembly. Eur. Polym. J. 2021, 151, 110443. [Google Scholar] [CrossRef]
- Liang, C.B.; Qiu, H.; Han, Y.Y.; Gu, H.B.; Song, P.; Wang, L.; Kong, J.; Cao, D.P.; Gu, J.W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. C 2019, 7, 2725–2733. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, J.; Feng, Y.; Feng, W. Assembly of graphene-aligned polymer composites for thermal conductive applications. Compos. Commun. 2018, 9, 33–41. [Google Scholar] [CrossRef]
- Jiang, F.; Cui, S.Q.; Rungnim, C.; Song, N.; Shi, L.Y.; Ding, P. Control of a dual-crosslinked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 2019, 31, 7686–7695. [Google Scholar] [CrossRef]
- Li, L.; Bai, Y.; Li, L.; Wang, S.; Zhang, T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 2017, 29, 1702517. [Google Scholar] [CrossRef]
- Sam, E.K.; Sam, D.K.; Lv, X.; Liu, B.; Xiao, X.; Gong, S.; Yu, W.; Chen, J.; Liu, J. Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 2019, 373, 531–546. [Google Scholar] [CrossRef]
- Qian, H.; Xu, D.; Du, C.; Zhang, D.; Li, X.; Huang, L.; Deng, L.; Tu, Y.; Mol, J.M.C.; Terryn, H.A. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. J. Mater. Chem. A 2017, 5, 2355–2364. [Google Scholar] [CrossRef] [Green Version]
- Youn, D.-H.; Lee, K.-S.; Jung, S.-K.; Kang, M. Fabrication of a simultaneous highly transparent and highly hydrophobic fibrous films. Appl. Sci. 2021, 11, 5565. [Google Scholar] [CrossRef]
- Shayesteh, H.; Norouzbeigi, R.; Rahbar-Kelishami, A. Hydrothermal facile fabrication of superhydrophobic magnetic nanospiky nickel wires: Optimization via statistical design. Surf. Interfaces 2021, 26, 101315. [Google Scholar] [CrossRef]
- Shen, L.; Qiu, W.; Wang, W.; Xiao, G.; Guo, Q. Facile fabrication of superhydrophobic conductive graphite nanoplatelet/vapor-grown carbon fiber/polypropylene composite coatings, Compos. Sci. Technol. 2015, 117, 39–45. [Google Scholar] [CrossRef]
- Hsu, C.-P.; Chang, L.-Y.; Chiu, C.-W.; Lee, P.T.C.; Lin, J.-J. Facile fabrication of robust superhydrophobic epoxy film with polyamine dispersed carbon nanotubes. ACS Appl. Mater. Inter. 2013, 5, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Ellinas, K.; Gogolides, E. Ultra-low friction, superhydrophobic, plasma micro-nanotextured fluorinated ethylene propylene (FEP) surfaces. Micro. Nano. Eng. 2022, 14, 100104. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, L.; Jing, J.; Wang, C.; Liu, F.; Yuan, R.; Jiang, M.; Wang, H. Fabrication of robust superhydrophobic organic-inorganic hybrid coating through a novel two-step phase separation method. Prog. Org. Coat. 2021, 157, 106320. [Google Scholar] [CrossRef]
- Wang, H.; Wang, R.; Tao, R.; Zhu, Y.; Lv, C.; Zhu, Y. Fabrication of superhydrophobic fiber fabric/epoxy composites coating on aluminum substrate with long-lived wear resistance. RSC Adv. 2016, 98, 95556–95563. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Math. Sci. Eng. R 2020, 142, 100580. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review, Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
- Kim, G.H.; Lee, D.; Shanker, A.; Shao, L.; Kwon, M.S.; Gidley, D.; Kim, J.; Pipe, K.P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 2015, 14, 295–300. [Google Scholar] [CrossRef]
- Gu, J.W.; Liang, C.B.; Zhao, X.M.; Gan, B.; Qiu, H.; Guo, Y.Q.; Yang, X.T.; Zhang, Q.Y.; Wang, D.Y. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 2017, 139, 83–89. [Google Scholar] [CrossRef]
- Xu, F.; Cui, Y.; Bao, D.; Lin, D.; Yuan, S.; Wang, X.; Wang, H.; Sun, Y. A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites. Chem. Eng. J. 2020, 388, 124287. [Google Scholar] [CrossRef]
- Le, T.X.H.; Bechelany, M.; Cretin, M. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon 2017, 122, 564–591. [Google Scholar] [CrossRef]
- He, P.; Jia, L.; Ma, G.; Wang, R.; Yuan, J.; Duan, X.; Yang, Z.; Jia, D. Effects of fiber contents on the mechanical and microwave absorbent properties of carbon fiber felt reinforced geopolymer composites. Ceram. Int. 2018, 44, 10726–10734. [Google Scholar] [CrossRef]
- Ma, J.; Shang, T.; Ren, L.; Yao, Y.; Zhang, T.; Xie, J.; Zhang, B.; Zeng, X.; Sun, R.; Xu, J.-B.; et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550. [Google Scholar] [CrossRef]
- Houa, X.; Chena, Y.; Dai, W.; Wang, Z.; Li, H.; Lin, C.; Nishimurad, K.; Jiang, N.; Yu, J. Highly thermal conductive polymer composites via constructing microphragmites communis structured carbon fibers. Chem. Eng. J. 2019, 375, 121921. [Google Scholar] [CrossRef]
- Song, W.; Gu, A.; Liang, G.; Yuan, L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl. Surf. Sci. 2011, 257, 4069–4074. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, S.; Wang, H.; Zhu, Y.; Fu, D.; Li, Z. Spherical Polydopamine-Modified Carbon-Felt Cathode with an Active Indole Structure for Efficient Hydrogen Peroxide Electroproduction. Appl. Sci. 2021, 11, 5371. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, W.; Cui, J.; Wu, S.; Han, J.; Zou, Y.; Huang, C. Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. J. Hazard. Mater. 2020, 383, 121152. [Google Scholar] [CrossRef]
- Cui, L.-J.; Geng, H.-Z.; Wang, W.-Y.; Chen, L.-T.; Gao, J. Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 2013, 54, 277–282. [Google Scholar] [CrossRef]
Sample Information | Water Contact Angle/° |
---|---|
10% FEP + 4% PU | 95.8 ± 2.0° |
20% FEP + 4% PU | 109.9 ± 2.6° |
30% FEP + 4% PU | 107.3 ± 1.0° |
40% FEP + 4% PU | 108.9 ± 3.2° |
50% FEP + 4% PU | 103.8 ± 1.8° |
Samples | Wear Rate Changes with Abrasion Cycles/Times | Friction Coefficient | |||
---|---|---|---|---|---|
30,000 | 60,000 | 90,000 | 120,000 | ||
A-CF/EP with PU of 2.0% | 1.42 × 10−13 | 1.21 × 10−13 | 1.92 × 10−13 | 0.72 × 10−13 | 0.398 |
A-CF/EP with PU of 4.0% | 1.19 × 10−13 | 1.07 × 10−13 | 0.86 × 10−13 | 0.67 × 10−13 | 0.363 |
A-CF/EP with PU of 6.0% | 0.91 × 10−13 | 0.82 × 10−13 | 0.62 × 10−13 | 0.58 × 10−13 | 0.318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Cui, Y.; Fu, Z.; Wang, S.; Du, Y.; Liu, F.; Zhu, Y. Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites. Appl. Sci. 2022, 12, 9363. https://doi.org/10.3390/app12189363
Huang H, Cui Y, Fu Z, Wang S, Du Y, Liu F, Zhu Y. Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites. Applied Sciences. 2022; 12(18):9363. https://doi.org/10.3390/app12189363
Chicago/Turabian StyleHuang, Haichao, Yexiang Cui, Zhen Fu, Shuaipeng Wang, Yan Du, Fang Liu, and Yanji Zhu. 2022. "Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites" Applied Sciences 12, no. 18: 9363. https://doi.org/10.3390/app12189363
APA StyleHuang, H., Cui, Y., Fu, Z., Wang, S., Du, Y., Liu, F., & Zhu, Y. (2022). Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites. Applied Sciences, 12(18), 9363. https://doi.org/10.3390/app12189363