Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults
Abstract
:1. Introduction
2. Geodynamic Setting and Tectonic Pattern
- The Symvoli–Fotolivos fault zone
- 2.
- The Tholos–Nea Zichni fault zone
- 3.
- The Belles–Kerkini fault zone
- 4.
- The Sochos fault zone
- 5.
- The Serres fault zone
- 6.
- The Drama fault zone
- 7.
- The Nigrita fault zone
3. Seismic History of the Study Area
4. Methods
4.1. Primary Geodetic Raw Data Analysis
4.2. Implementation of Triangulation Methodology—Geostatistical Analysis (Interpolation) of Triangulation Methodology Results
4.2.1. Maximum (MaHE) and Minimum (MiHE) Horizontal Extension
4.2.2. Velocity (V)
4.2.3. Maximum Shear Strain (MaxSS)
4.2.4. Area Strain (AS)
4.3. SAR Data and Interferometric Processing
5. Results
5.1. Calculation of the Geodetically Based Parameters
5.1.1. Maximum (MaHE) and Minimum (MiHE) Horizontal Extension
5.1.2. Velocity (V)
5.1.3. Maximum Shear Strain (MaxSS)
5.1.4. Area Strain (AS)
5.2. EO-Based Terrain Motion Measurements
6. Discussion
7. Conclusions
- A dominant N–S (up to NE–SW) direction of extension is documented by the geodetic parameters, which is responsible for the major E–W (up to NW–SE) fault zones observed throughout the Strymon basin;
- The eastern margin of Strymon basin includes the most tectonically active structures (e.g., Serres and Tholos–Nea Zichni dip-slip, normal fault zones) of the study area; the Belles–Kerkini dip-slip, normal fault zone, located at the northwestern part, may be considered potentially active. It is noted that the Serres fault zone accommodates the greatest strain within the study area;
- The southwestern margin of the Strymon basin shows much lower, but not negligible, deformation. This deformation could be associated with the low and scattered seismicity in this area. According to the deformation indices, shear faulting is the expected kinematics;
- GNSS data indicate some moderate strain rates at the northwest boundary of the Strymon basin (southeast of Lake Kerkini and near Zevgolatio), implying that some are highlighted by both deformational parameters and seismic activity;
- The strain parameters suggest that the Serres fault zone should be further extended to the west, indicating that its length has been underestimated;
- The geotectonically related GNSS results (V parameter) highlight the SSE motion of the study area, being consistent with the Aegean microplate motion, which moves towards the Hellenic Subduction Zone;
- No horizontal rates have been traced by InSAR in the E–W direction along the study area; if they do exist, they would be below resolution (less than 2 mm/yr);
- Vertical InSAR subsidence of a few mm/yr is traced in the immediate hanging wall of the Serres fault zone, within the Quaternary basin; however, it is mainly attributed to non-tectonic effects such as groundwater extraction;
- The detection of potential active faults in areas where geodetic strain is recorded, but active faults have not been mapped, or the prolongation of fault traces in areas where local conditions prevent direct observations, highlight the essential role of satellite geodesy and InSAR in the process of seismic hazard assessment, as it may decisively contribute to the determination of fault properties.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billiris, H.; Paradissis, D.; Veis, G.; England, P.; Featherstone, W.; Parsons, B.; Cross, P.; Rands, P.; Rayson, M.; Sellers, P.; et al. Geodetic Determination of Tectonic Deformation in Central Greece from 1900 to 1988. Nature 1991, 350, 124–129. [Google Scholar] [CrossRef]
- Rossikopoulos, D.; Fotiou, A.; Livieratos, E.; Baldi, P. A Rigorous Analysis of GPS Data to Detect Crustal Deformations. Application in the Area of the Ionian Sea. Tectonophysics 1998, 294, 271–280. [Google Scholar] [CrossRef]
- Wilkinson, M.W.; McCaffrey, K.J.W.; Jones, R.R.; Roberts, G.P.; Holdsworth, R.E.; Gregory, L.C.; Walters, R.J.; Wedmore, L.; Goodall, H.; Iezzi, F. Near-Field Fault Slip of the 2016 Vettore Mw 6.6 Earthquake (Central Italy) Measured Using Low-Cost GNSS. Sci. Rep. 2017, 7, 4612. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, I.D.; van Balen, R.; Silva, P.G.; Reicherter, K. Geomorphology of Active Faulting and Seismic Hazard Assessment: New Tools and Future Challenges. Geomorphology 2015, 237, 1–13. [Google Scholar] [CrossRef]
- Faure Walker, J.P.; Roberts, G.P.; Cowie, P.A.; Papanikolaou, I.D.; Sammonds, P.R.; Michetti, A.M.; Phillips, R.J. Horizontal Strain-Rates and Throw-Rates across Breached Relay Zones, Central Italy: Implications for the Preservation of Throw Deficits at Points of Normal Fault Linkage. J. Struct. Geol. 2009, 31, 1145–1160. [Google Scholar] [CrossRef]
- Holt, W.E.; Li, M.; Haines, A.J. Earthquake Strain Rates and Instantaneous Relative Motions within Central and Eastern Asia. Geophys. J. Int. 1995, 122, 569–593. [Google Scholar] [CrossRef]
- Hollenstein, C.; Müller, M.D.; Geiger, A.; Kahle, H.G. Crustal Motion and Deformation in Greece from a Decade of GPS Measurements, 1993–2003. Tectonophysics 2008, 449, 17–40. [Google Scholar] [CrossRef]
- Chousianitis, K.; Ganas, A.; Evangelidis, C.P. Strain and Rotation Rate Patterns of Mainland Greece from Continuous GPS Data and Comparison between Seismic and Geodetic Moment Release. J. Geophys. Res. Solid Earth 2015, 120, 3909–3931. [Google Scholar] [CrossRef]
- Iezzi, F.; Roberts, G.; Faure Walker, J.; Papanikolaou, I.; Ganas, A.; Deligiannakis, G.; Beck, J.; Wolfers, S.; Gheorghiu, D. Temporal and Spatial Earthquake Clustering Revealed through Comparison of Millennial Strain-Rates from 36Cl Cosmogenic Exposure Dating and Decadal GPS Strain-Rate. Sci. Rep. 2021, 11, 23320. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Fielding, E. Measurement of Interseismic Strain Accumulation across the North Anatolian Fault by Satellite Radar Interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef]
- Burchfiel, B.C. New Technology; New Geological Challenges. GSA Today 2004, 14, 4–10. [Google Scholar] [CrossRef]
- Papanikolaou, I.D.; Roberts, G.P.; Michetti, A.M. Fault Scarps and Deformation Rates in Lazio–Abruzzo, Central Italy: Comparison between Geological Fault Slip-Rate and GPS Data. Tectonophysics 2005, 408, 147–176. [Google Scholar] [CrossRef]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System Constraints on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695. [Google Scholar] [CrossRef]
- Vernant, P.; Fadil, A.; Mourabit, T.; Ouazar, D.; Koulali, A.; Davila, J.M.; Garate, J.; McClusky, S.; Reilinger, R. Geodetic Constraints on Active Tectonics of the Western Mediterranean: Implications for the Kinematics and Dynamics of the Nubia-Eurasia Plate Boundary Zone. J. Geodyn. 2010, 49, 123–129. [Google Scholar] [CrossRef]
- Müller, M.D.; Geiger, A.; Kahle, H.G.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S. Velocity and Deformation Fields in the North Aegean Domain, Greece, and Implications for Fault Kinematics, Derived from GPS Data 1993-2009. Tectonophysics 2013, 597–598, 34–49. [Google Scholar] [CrossRef]
- D’Agostino, N.; Métois, M.; Koci, R.; Duni, L.; Kuka, N.; Ganas, A.; Georgiev, I.; Jouanne, F.; Kaludjerovic, N.; Kandić, R. Active Crustal Deformation and Rotations in the Southwestern Balkans from Continuous GPS Measurements. Earth Planet. Sci. Lett. 2020, 539, 116246. [Google Scholar] [CrossRef]
- Le Pichon, X.; Angelier, J. The Hellenic Arc and Trench System: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area. Tectonophysics 1979, 60, 1–42. [Google Scholar] [CrossRef]
- Kokkalas, S.; Xypolias, P.; Koukouvelas, I.; Doutsos, T. Postcollisional Contractional and Extensional Deformation in the Aegean Region. Spec. Pap. Geol. Soc. Am. 2006, 409, 97–123. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.P.; et al. Aegean Tectonics: Strain Localisation, Slab Tearing and Trench Retreat. Tectonophysics 2013, 597–598, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, L.; Menant, A.; Clerc, C.; Sternai, P.; Bellahsen, N.; Leroy, S.; Pik, R.; Stab, M.; Faccenna, C.; Gorini, C. Extensional Crustal Tectonics and Crust-Mantle Coupling, a View from the Geological Record. Earth-Sci. Rev. 2018, 185, 1187–1209. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kounov, A.; Maţenco, L.; Nievergelt, P.; Oberhänsli, R.; Pleuger, J.; Schefer, S.; Schuster, R.; Tomljenović, B.; et al. Tectonic Units of the Alpine Collision Zone between Eastern Alps and Western Turkey. Gondwana Res. 2020, 78, 308–374. [Google Scholar] [CrossRef]
- Nyst, M.; Thatcher, W. New Constraints on the Active Tectonic Deformation of the Aegean. J. Geophys. Res. B Solid Earth 2004, 109, 1–23. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Paradissis, D.; Ergintav, S.; Vernant, P. Geodetic Constraints on the Tectonic Evolution of the Aegean Region and Strain Accumulation along the Hellenic Subduction Zone. Tectonophysics 2010, 488, 22–30. [Google Scholar] [CrossRef]
- McNeill, L.C.; Mille, A.; Minshull, T.A.; Bull, J.M.; Kenyon, N.H.; Ivanov, M. Extension of the North Anatolian Fault into the North Aegean Trough: Evidence for Transtension, Strain Partitioning, and Analogues for Sea of Marmara Basin Models. Tectonics 2004, 23, TC2016. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Alexandri, M.; Nomikou, P. Active Faulting in the North Aegean Basin. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Geological Society of America: Boulder, CO, USA, 2006; Volume 409, pp. 189–209. [Google Scholar] [CrossRef]
- Dewey, J.F.; Sengör, A.M.C. Aegean and Surrounding Regions. Complex Multiplate and Continuum Tectonics in a Convergent Zone. Geol. Soc. Am. Bull. 1979, 90, 84–92. [Google Scholar] [CrossRef]
- Robertson, A.; Dixon, J. Introduction: Aspects of the Geological Evolution of the Eastern Mediterranean. Geol. Soc. Lond. Spec. Publ. 1984, 17, 1–74. [Google Scholar] [CrossRef]
- Mercier, J.L.; Sorel, D.; Vergely, P.; Simeakis, K. Extensional Tectonic Regimes in the Aegean Basins during the Cenozoic. Basin Res. 1989, 2, 49–71. [Google Scholar] [CrossRef]
- Mascle, J.; Martin, L. Shallow Structure and Recent Evolution of the Aegean Sea: A Synthesis Based on Continuous Reflection Profiles. Mar. Geol. 1990, 94, 271–299. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Aydin, A. Fault Structure and Related Basins of the North Aegean Sea and Its Surroundings. Tectonics 2002, 21, 10-1–10-17. [Google Scholar] [CrossRef]
- Papanikolaou, D.J.; Royden, L.H. Disruption of the Hellenic Arc: Late Miocene Extensional Detachment Faults and Steep Pliocene-Quaternary Normal Faults—Or What Happened at Corinth? Tectonics 2007, 26, TC5003. [Google Scholar] [CrossRef]
- Jolivet, L.; Brun, J.P. Cenozoic Geodynamic Evolution of the Aegean. Int. J. Earth Sci. 2010, 99, 109–138. [Google Scholar] [CrossRef]
- Sternai, P.; Jolivet, L.; Menant, A.; Gerya, T. Driving the Upper Plate Surface Deformation by Slab Rollback and Mantle Flow. Earth Planet. Sci. Lett. 2014, 405, 110–118. [Google Scholar] [CrossRef]
- Sboras, S.; Chatzipetros, A.; Pavlides, S.B. North Aegean Active Fault Pattern and the 24 May 2014, Mw 6.9 Earthquake. In Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region; American Geophysical Union (AGU); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 239–272. [Google Scholar]
- Bocchini, G.M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P.E.; Ruscic, M.; Papadopoulos, G.A.; Rische, M.; Friederich, W. Tearing, Segmentation, and Backstepping of Subduction in the Aegean: New Insights from Seismicity. Tectonophysics 2018, 734–735, 96–118. [Google Scholar] [CrossRef]
- Brun, J.P.; Sokoutis, D. Core Complex Segmentation in North Aegean, A Dynamic View. Tectonics 2018, 37, 1797–1830. [Google Scholar] [CrossRef]
- Lybéris, N. Tectonic Evolution of the North Aegean Trough. Geol. Soc. Lond. Spec. Publ. 1984, 17, 709–725. [Google Scholar] [CrossRef]
- Pavlides, S.; Kilias, A. Neotectonic and Active Faults along the Serbomacedonian Zone (SE Chalkidiki, Northern Greece). Ann. Tecton. 1987, 1, 97–104. [Google Scholar]
- Pavlides, S. Active Faulting in Northern Greece: Implications on Engineering Geology. In Proceedings of the International Symposium on Engineering Geology and the Environment, Athens, Greece, 23–27 June 1997; pp. 315–320. [Google Scholar]
- Mountrakis, D.; Tranos, M.; Papazachos, C.; Thomaidou, E.; Karagianni, E.; Vamvakaris, D. Neotectonic and Seismological Data Concerning Major Active Faults, and the Stress Regimes of Northern Greece. Geol. Soc. Spec. Publ. 2006, 260, 649–670. [Google Scholar] [CrossRef]
- Sboras, S. The Greek Database of Seismogenic Sources: Seismotectonic Implications for North Greece. Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2011. [Google Scholar]
- Caputo, R.; Chatzipetros, A.; Pavlides, S.; Sboras, S. The Greek Database of Seismogenic Sources (GreDaSS): State-of-the-Art for Northern Greece. Ann. Geophys. 2012, 55, 859–894. [Google Scholar] [CrossRef]
- Dinter, D.A.; Royden, L. Late Cenozoic Extension in Northeastern Greece: Strymon Valley Detachment System and Rhodope Metamorphic Core Complex. Geology 1993, 21, 45–48. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Deligiannakis, G.; Hengesh, J.; Dafnis, P.; Panagopoulos, A.; Lymperis, E. Paleoseismic Trenching and Evaluation of the Symvoli-Fotolivos and Tholos-Nea Zichni Fault Zones in Northern Greece. In Proceedings of the 9th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), Possidi, Greece, 25–27 June 2018; pp. 205–208. [Google Scholar]
- Papanikolaou, I.; Dafnis, P.; Deligiannakis, G.; Hengesh, J.; Panagopoulos, A. Active Faults, Paleoseismological Trenching and Seismic Hazard Assessment in the Northern Mygdonia Basin, Northern Greece: The Assiros-Krithia Fault and the Drimos Fault Zone. Quat. Int. 2022. [Google Scholar] [CrossRef]
- Papazachos, B.; Papazachou, C. The Earthquakes of Greece, 3rd ed.; Ziti Publications: Thessaloniki, Greece, 2003. [Google Scholar]
- Available online: http://www.Gein.Noa.Gr/En/ (accessed on 24 March 2018).
- El-Fiky, G.S. Crustal Strains in the Eastern Mediterranean and Middle East as Derived from GPS Observations. Bull. Earthq. Res. Inst. Univ. Tokyo 2000, 75, 105–125. [Google Scholar]
- Jenny, S.; Goes, S.; Giardini, D.; Kahle, H.G. Earthquake Recurrence Parameters from Seismic and Geodetic Strain Rates in the Eastern Mediterranean. Geophys. J. Int. 2004, 157, 1331–1347. [Google Scholar] [CrossRef]
- Pérouse, E.; Chamot-Rooke, N.; Rabaute, A.; Briole, P.; Jouanne, F.; Georgiev, I.; Dimitrov, D. Bridging Onshore and Offshore Present-Day Kinematics of Central and Eastern Mediterranean: Implications for Crustal Dynamics and Mantle Flow. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Martinod, J.; Hatzfeld, D.; Savvaidis, P.; Katsambalos, K. Rapid N-S Extension in the Mygdonian Graben (Northern Greece) Deduced from Repeated Geodetic Surveys. Geophys. Res. Lett. 1997, 24, 3293–3296. [Google Scholar] [CrossRef]
- Avallone, A.; Briole, P.; Agatza-Balodimou, A.M.; Billiris, H.; Charade, O.; Mitsakaki, C.; Nercessian, A.; Papazissi, K.; Paradissis, D.; Veis, G. Analysis of Eleven Years of Deformation Measured by GPS in the Corinth Rift Laboratory Area. Comptes Rendus Geosci. 2004, 336, 301–311. [Google Scholar] [CrossRef]
- Flerit, F.; Armijo, R.; King, G.; Meyer, B. The Mechanical Interaction between the Propagating North Anatolian Fault and the Back-Arc Extension in the Aegean. Earth Planet. Sci. Lett. 2004, 224, 347–362. [Google Scholar] [CrossRef]
- Bernard, P.; Lyon-Caen, H.; Briole, P.; Deschamps, A.; Boudin, F.; Makropoulos, K.; Papadimitriou, P.; Lemeille, F.; Patau, G.; Billiris, H.; et al. Seismicity, Deformation and Seismic Hazard in the Western Rift of Corinth: New Insights from the Corinth Rift Laboratory (CRL). Tectonophysics 2006, 426, 7–30. [Google Scholar] [CrossRef]
- Nocquet, J.M. Present-Day Kinematics of the Mediterranean: A Comprehensive Overview of GPS Results. Tectonophysics 2012, 579, 220–242. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Pikridas, C.; Pavlides, S.; Chatzipetros, A. Geodetic Analysis of the Tectonic Crustal Deformation Pattern in the North Aegean Sea, Greece. Mediterr. Geosci. Rev. 2021, 3, 79–94. [Google Scholar] [CrossRef]
- Mouslopoulou, V.; Saltogianni, V.; Gianniou, M.; Stiros, S. Geodetic Evidence for Tectonic Activity on the Strymon Fault System, Northeast Greece. Tectonophysics 2014, 633, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Barka, A.A.; Kadinsky-Cade, K. Strike-Slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Pavlides, S.; Mountrakis, D.; Kilias, A.; Tranos, M. The Role of Strike-Slip Movements in the Extensional Area of Northern Aegean (Greece). A Case of Transtensional Tectonics. Ann. Tecton. 1990, 4, 196–211. [Google Scholar]
- Lallemant, S.; Truffert, C.; Jolivet, L.; Henry, P.; Chamot-Rooke, N.; de Voogd, B. Spatial Transition from Compression to Extension in the Western Mediterranean Ridge Accretionary Complex. Tectonophysics 1994, 234, 33–52. [Google Scholar] [CrossRef]
- Poulos, S.E.; Lykousis, V.; Collins, M.B.; Rohling, E.J.; Pattiaratchi, C.B. Sedimentation Processes in a Tectonically Active Environment: The Kerkyra-Kefalonia Submarine Valley System (NE Ionian Sea). Mar. Geol. 1999, 160, 25–44. [Google Scholar] [CrossRef]
- Le Pichon, X.; Lallemant, S.J.; Chamot-Rooke, N.; Lemeur, D.; Pascal, G. The Mediterranean Ridge Backstop and the Hellenic Nappes. Mar. Geol. 2002, 186, 111–125. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Tüysüz, O.; İmren, C.; Sakınç, M.; Eyidoğan, H.; Görür, N.; le Pichon, X.; Rangin, C. The North Anatolian Fault: A New Look. Annu. Rev. Earth Planet. Sci. 2005, 33, 37–112. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Nomikou, P.; Papanikolaou, I.; Lampridou, D.; Rousakis, G.; Alexandri, M. Active Tectonics and Seismic Hazard in Skyros Basin, North Aegean Sea, Greece. Mar. Geol. 2019, 407, 94–110. [Google Scholar] [CrossRef]
- Rabaute, A.; Chamot-Rooke, N. Quantitative Mapping of Active Mud Volcanism at the Western Mediterranean Ridge-Backstop Contact. Mar. Geophys. Res. 2007, 28, 271–295. [Google Scholar] [CrossRef]
- Özbakir, A.D.; Şengör, A.M.C.; Wortel, M.J.R.; Govers, R. The Pliny–Strabo Trench Region: A Large Shear Zone Resulting from Slab Tearing. Earth Planet. Sci. Lett. 2013, 375, 188–195. [Google Scholar] [CrossRef]
- Sakellariou, D.; Rousakis, G.; Vougioukalakis, G.; Ioakim, C.; Panagiotopoulos, I.; Morfis, I.; Zimianitis, E.; Athanasoulis, K.; Tsampouraki-Kraounaki, K.; Mpardis, D.; et al. Deformation Pattern in the Western North Aegean Trough: Preliminary Results. Bull. Geol. Soc. Greece 2016, 50, 124–133. [Google Scholar] [CrossRef]
- Pondrelli, S. European-Mediterranean Regional Centroid-Moment Tensors Catalog (RCMT) [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2002. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papazachou, C.B. The Earthquakes of Greece; Ziti Editions: Thessaloniki, Greece, 1997. [Google Scholar]
- Burchfiel, C.B.; Nakov, R.; Tzankov, T.; Royden, L.H. Cenozoic Extension in Bulgaria and Northern Greece: The Northern Part of the Aegean Extensional Regime. Geol. Soc. Spec. Publ. 2000, 173, 325–352. [Google Scholar] [CrossRef]
- Tranos, M.D.; Kachev, V.N.; Mountrakis, D.M. Transtensional Origin of the NE–SW Simitli Basin along the Strouma (Strymon) Lineament, SW Bulgaria. J. Geol. Soc. Lond. 2008, 165, 499–510. [Google Scholar] [CrossRef]
- Tranos, M. Strymon and Strymonikos Gulf Basins (Northern Greece): Implications on Their Formation and Evolution from Faulting. J. Geodyn. 2011, 51, 285–305. [Google Scholar] [CrossRef]
- Pavlides, S.; Caputo, R. Magnitude versus Faults’ Surface Parameters: Quantitative Relationships from the Aegean Region. Tectonophysics 2004, 380, 159–188. [Google Scholar] [CrossRef]
- Psilovikos, A. Geomorphological and Structural Modification of the Serbomacedonian Massif during the Neotectonic Stage. Tectonophysics 1984, 110, 27–45. [Google Scholar] [CrossRef]
- Psilovikos, A.; Papaphilippou, E. Pediments, Alluvial Fans and Neotectonic Movements of the Mt Kerkini/Belassitsa. Geol. Rhodopica 1990, 2, 95–103. [Google Scholar]
- Maravelakis, M. Study on the Earthquakes of Chalkidiki; Theodoridou C. Editions: Thessaloniki, Greece, 1936; Volume 7. [Google Scholar]
- Kockel, F.; Mollat, H. Geological Map of the Chalkidiki Peninsula and Adjacent Areas (Greece), Scale 1: 100000; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 1977. [Google Scholar]
- Mountrakis, D.; Kilias, A.; Pavlides, S.; Sotiriadis, L.; Psilovikos, A.; Astaras, T.; Vavliakis, E.; Koufos, G.; Dimopoulos, G.; Soulios, G.; et al. Neotectonic Map of Greece, Langadhas Sheet, 1:100000; Earthquake Planning and Protection Organisation and European Center on Prevention and Forecasting of Earthquakes: Thessaloniki, Greece, 1996. [Google Scholar]
- Goldsworthy, M.; Jackson, J.; Haines, J. The Continuity of Active Fault Systems in Greece. Geophys. J. Int. 2002, 148, 596–618. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papaioannou, C.A.; Papazachos, C.B.; Savaidis, A.S. Atlas of Isoseismal Maps for Strong Shallow Earthquakes in Greece and Surrounding Area (426 BC–1995); Ziti Publications: Thessaloniki, Greece, 1997. [Google Scholar]
- IGME—Institute of Geology and Mineral Exploration Geological Map of Greece. 1:50,000 Scale Map Series, “Serres” Sheet; IGME: Athens, Greece, 1985. [Google Scholar]
- Tranos, M. Contribution to the Study of the Neotectonic Deformation in the Region of Central Macedonia and North Aegean; University of Thessaloniki: Thessaloniki, Greece, 1998. [Google Scholar]
- Tranos, M.; Mountrakis, D. The Serres Fault Zone (SZF): An Active Fault Zone in Eastern Macedonia (Northern Greece). In Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14–20 April 2004; pp. 892–895. [Google Scholar]
- IGME—Institute of Geology and Mineral Exploration Geological Map of Greece. 1:500,000 Scale; IGME: Athens, Greece, 1983. [Google Scholar]
- Meyer, B.; Armijo, R.; Dimitrov, D. Active Faulting in SW Bulgaria: Possible Surface Rupture of the 1904 Struma Earthquakes. Geophys. J. Int. 2002, 148, 246–255. [Google Scholar] [CrossRef]
- Pavlides, S.; Tranos, M. Structural Characteristics of Two Strong Earthquakes in the North Aegean: Ierissos (1932) and Agios Efstratios (1968). J. Struct. Geol. 1991, 13, 205–214. [Google Scholar] [CrossRef]
- Chatzipetros, A.; Kokkalas, S.; Pavlides, S.; Koukouvelas, I. Palaeoseismic Data and Their Implication for Active Deformation in Greece. J. Geodyn. 2005, 40, 170–188. [Google Scholar] [CrossRef]
- Papazachos, B.; Mountrakis, D.; Psilovikos, A.; Leventakis, G. Surface Fault Traces and Fault Plane Solutions of the May–June 1978 Major Shocks in the Thessaloniki Area, Greece. Tectonophysics 1979, 53, 171–183. [Google Scholar] [CrossRef]
- Soufleris, C.; Jackson, J.A.; King, G.C.P.; Spencer, C.A.; Scholz, C.H. The 1978 Earthquake Sequence near Thessaloniki (Northern Greece). Geophys. J. Int. 1982, 68, 429–458. [Google Scholar] [CrossRef]
- Voidomatis, P.S.; Pavlides, S.B.; Papadopoulos, G.A. Active Deformation and Seismic Potential in the Serbomacedonian Zone, Northern Greece. Tectonophysics 1990, 179, 1–9. [Google Scholar] [CrossRef]
- Tranos, M.; Papadimitriou, E.; Kilias, A. Thessaloniki–Gerakarou Fault Zone (TGFZ): The Western Extension of the 1978 Thessaloniki Earthquake Fault (Northern Greece) and Seismic Hazard Assessment. J. Struct. Geol. 2003, 25, 2109–2123. [Google Scholar] [CrossRef]
- Bitharis, S.; Fotiou, A.; Pikridas, C.; Rossikopoulos, D. A New Velocity Field of Greece Based on Seven Years (2008–2014) Continuously Operating GPS Station Data. In Earth and Environmental Sciences for Future Generations; Springer: Cham, Switzerland, 2016; pp. 321–329. [Google Scholar]
- Fotiou, A.; Rossikopoulos, D.; Katsougiannopoulos, S.; Tsioukas, V.; Pikridas, C.; Spatalas, S. The Hermes GNSS NtripCaster of AUTh. Bull. Geod. Geophys. 2009, 69, 35–43. [Google Scholar]
- Fotiou, A.; Pikridas, C. GPS and Geodetic Applications, 2nd ed.; Ziti Publications: Thessaloniki, Greece, 2012; ISBN 978-960-456-346-3. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data. J. Geophys. Res. Solid Earth 2006, 111, B02406. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; Floyd, M.A.; Mcclusky, S.C.; GAMIT Reference Manual. GPS Analysis at MIT. 2015. Available online: http://geoweb.mit.edu/gg/docs.php (accessed on 25 February 2016).
- Hashimoto, M.; Jackson, D.D. Plate Tectonics and Crustal Deformation around the Japanese Islands. J. Geophys. Res. 1993, 98, 16149. [Google Scholar] [CrossRef]
- Shen, Z.K.; Jackson, D.D.; Ge, B.X. Crustal Deformation across and beyond the Los Angeles Basin from Geodetic Measurements. J. Geophys. Res. B Solid Earth 1996, 101, 27957–27980. [Google Scholar] [CrossRef]
- Prawirodirdjo, L.; Bock, Y.; Genrich, J.F.; Puntodewo, S.S.O.; Rais, J.; Subarya, C.; Sutisna, S. One Century of Tectonic Deformation along the Sumatran Fault from Triangulation and Global Positioning System Surveys. J. Geophys. Res. Solid Earth 2000, 105, 28343–28361. [Google Scholar] [CrossRef]
- Sagiya, T.; Nishimura, T.; Iio, Y.; Tada, T. Crustal Deformation around the Northern and Central Itoigawa-Shizuoka Tectonic Line. Earth Planets Space 2002, 54, 1059–1063. [Google Scholar] [CrossRef]
- Yuan, X.; Fu, J.; Sun, H.; Toth, C. The Application of GPS Precise Point Positioning Technology in Aerial Triangulation. ISPRS J. Photogramm. Remote Sens. 2009, 64, 541–550. [Google Scholar] [CrossRef]
- Lazos, I.; Pikridas, C.; Chatzipetros, A.; Pavlides, S. Determination of Local Active Tectonics Regime in Central and Northern Greece, Using Primary Geodetic Data. Appl. Geomat. 2020, 13, 3–17. [Google Scholar] [CrossRef]
- Lazos, I.; Stergiou, C.L.; Chatzipetros, A.; Pikridas, C.; Bitharis, S.; Melfos, V. Active Tectonics (Extensional Regime and Rotations) and Tertiary Mineralization Occurrences within Central Macedonia, Greece. In Proceedings of the 9th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), Possidi, Greece, 25–27 June 2018; pp. 145–148. [Google Scholar]
- Lazos, I.; Sboras, S.; Chousianitis, K.; Kondopoulou, D.; Pikridas, C.; Bitharis, S.; Pavlides, S. Temporal Evolution of Crustal Rotation in the Aegean Region Based on Primary Geodetically-Derived Results and Palaeomagnetism. Acta Geod. Geophys. 2022, 57, 317–334. [Google Scholar] [CrossRef]
- Available online: http://www.unavco.org (accessed on 30 January 2016).
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. J. Geophys. Res. Solid Earth 2006, 111, B05411. [Google Scholar] [CrossRef]
- Hackl, M.; Malservisi, R.; Wdowinski, S. Strain Rate Patterns from Dense GPS Networks. Nat. Hazards Earth Syst. Sci. 2009, 9, 1177–1187. [Google Scholar] [CrossRef]
- Blasco, J.M.D.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef]
- Aslan, G.; Foumelis, M.; Raucoules, D.; de Michele, M.; Bernardie, S.; Cakir, Z. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef]
- Vassilakis, E.; Foumelis, M.; Erkeki, A.; Kotsi, E.; Lekkas, E. Post-Event Surface Deformation of Amyntaio Slide (Greece) by Complementary Analysis of Remotely Piloted Airborne System Imagery and SAR Interferometry. Appl. Geomat. 2021, 13, 65–75. [Google Scholar] [CrossRef]
- Lemoine, A.; Briole, P.; Bertil, D.; Roullé, A.; Foumelis, M.; Thinon, I.; Raucoules, D.; de Michele, M.; Valty, P.; Colomer, R.H. The 2018–2019 Seismo-Volcanic Crisis East of Mayotte, Comoros Islands: Seismicity and Ground Deformation Markers of an Exceptional Submarine Eruption. Geophys. J. Int. 2020, 223, 22–44. [Google Scholar] [CrossRef]
- Karakostas, V.; Papazachos, C.; Papadimitriou, E.; Foumelis, M.; Kiratzi, A.; Pikridas, C.; Kostoglou, A.; Kkallas, C.; Chatzis, N.; Bitharis, S.; et al. The March 2021 Tyrnavos, Central Greece, Doublet (Μw6.3 and Mw6.0): Aftershock Relocation, Faulting Details, Coseismic Slip and Deformation. Bull. Geol. Soc. Greece 2021, 58, 131–178. [Google Scholar] [CrossRef]
- Vassilakis, E.; Kaviris, G.; Kapetanidis, V.; Papageorgiou, E.; Foumelis, M.; Konsolaki, A.; Petrakis, S.; Evangelidis, C.P.; Alexopoulos, J.; Karastathis, V.; et al. The 27 September 2021 Earthquake in Central Crete (Greece)—Detailed Analysis of the Earthquake Sequence and Indications for Contemporary Arc-Parallel Extension to the Hellenic Arc. Appl. Sci. 2022, 12, 2815. [Google Scholar] [CrossRef]
- Available online: https://Sentinels.Copernicus.Eu (accessed on 25 May 2022).
- Lle Cozannet, G.; Kervyn, M.; Russo, S.; Ifejika Speranza, C.; Ferrier, P.; Foumelis, M.; Lopez, T.; Modaressi, H. Space-Based Earth Observations for Disaster Risk Management. Surv. Geophys. 2020, 41, 1209–1235. [Google Scholar] [CrossRef] [Green Version]
- Foumelis, M.; Papadopoulou, T.; Bally, P.; Pacini, F.; Provost, F.; Patruno, J. Monitoring Geohazards Using On-Demand and Systematic Services on Esa’s Geohazards Exploitation Platform. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 5457–5460. [Google Scholar]
- Amodio, A.; Samarelli, S.; Massimi, V.; Lorenzo-Alonso, A.; Gonzalez, A.U.; Foumelis, M.; Provost, F.; Bally, P.; Nutricato, R.; Oscar Nitti, D. EO4SD-DRR Earth Observation to Support the Reconstruction and Rehabilitation in the Aftermaths of Tsunami and Earthquake. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2021; pp. 1978–1981. [Google Scholar]
- Foumelis, M.; Papazachos, C.; Papadimitriou, E.; Karakostas, V.; Ampatzidis, D.; Moschopoulos, G.; Kostoglou, A.; Ilieva, M.; Minos-Minopoulos, D.; Mouratidis, A.; et al. On Rapid Multidisciplinary Response Aspects for Samos 2020 M7.0 Earthquake. Acta Geophys. 2021, 69, 1025–1048. [Google Scholar] [CrossRef]
- Foumelis, M.; Lorenzo-Alonso, A.; Eisenberg, R.; González, Á.U.; Aubrecht, C.; Bally, P.; Kolomaznik, J.; Massimi, V.; Rubinyi, S.; Gonzalez, F.C.; et al. EO4SD Disaster Risk Reduction Terrain Motion Products in Support of the City Resilience Program. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 3289–3292. [Google Scholar]
- Manunta, M.; de Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6229–6281. [Google Scholar] [CrossRef]
- Foumelis, M.; Blasco, J.M.D.; Brito, F.; Pacini, F.; Pishehvar, P. Snapping for Sentinel-1 Mission on Geohazards Exploitation Platform: An Online Medium Resolution Surface Motion Mapping Service. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2021; pp. 3991–3994. [Google Scholar]
- Samieie-Esfahany, S.; Hanssen, R.F.; van Thienen-Visser, K.; Muntendam-Bos, A. On the Effect of Horizontal Deformation on InSAR Subsidence Estimates. In Proceedings of the 2009 Workshop on Fringe, Frascati, Italy, 30 November–4 December 2009. [Google Scholar]
- Foumelis, M.; Papageorgiou, E.; Stamatopoulos, C. Episodic Ground Deformation Signals in Thessaly Plain (Greece) Revealed by Data Mining of SAR Interferometry Time Series. Int. J. Remote Sens. 2016, 37, 3696–3711. [Google Scholar] [CrossRef]
- Burnol, A.; Foumelis, M.; Gourdier, S.; Deparis, J.; Raucoules, D. Monitoring of Expansive Clays over Drought-Rewetting Cycles Using Satellite Remote Sensing. Atmosphere 2021, 12, 1262. [Google Scholar] [CrossRef]
- Kahle, H.G.; Cocard, M.; Peter, Y.; Geiger, A.; Reilinger, R.; Barka, A.; Veis, G. GPS-Derived Strain Rate Field within the Boundary Zones of the Eurasian, African, and Arabian Plates. J. Geophys. Res. Solid Earth 2000, 105, 23353–23370. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E.C. A Geodetic Plate Motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
Station | Longitude | Latitude | VE (m/yr) | VN (m/yr) | VU (m/yr) | σVE (m/yr) | σVN (m/yr) | σVU (m/yr) |
---|---|---|---|---|---|---|---|---|
SMOL | 24.70587 | 41.57750 | 0.0014 | −0.0029 | −0.0005 | 0.0017 | 0.0014 | 0.0034 |
DUTH | 24.91680 | 41.14021 | −0.0004 | −0.0033 | −0.0004 | 0.0022 | 0.0022 | 0.0034 |
041A | 22.80240 | 41.16515 | 0.0013 | −0.0076 | −0.0042 | 0.0030 | 0.0020 | 0.0039 |
THS1 | 22.95936 | 40.62747 | 0.0007 | −0.0077 | −0.0001 | 0.0021 | 0.0017 | 0.0044 |
AUT1 | 23.00372 | 40.56682 | 0.0010 | −0.0078 | −0.0019 | 0.0015 | 0.0019 | 0.0040 |
AFYT | 23.43532 | 40.09713 | 0.0005 | −0.0085 | −0.0009 | 0.0018 | 0.0019 | 0.0050 |
SERR | 23.03745 | 41.28591 | 0.0009 | −0.0056 | 0.0011 | 0.0018 | 0.0019 | 0.0068 |
PROV | 23.38698 | 41.06844 | 0.0009 | −0.0059 | −0.0022 | 0.0018 | 0.0013 | 0.0036 |
STRA | 23.79077 | 40.52022 | 0.0007 | −0.0079 | 0.0007 | 0.0021 | 0.0024 | 0.0039 |
076A | 23.94427 | 40.03895 | 0.0011 | −0.0067 | 0.0020 | 0.0010 | 0.0060 | 0.0101 |
SAND | 23.26782 | 41.55056 | −0.0001 | −0.0036 | 0.0001 | 0.0009 | 0.0008 | 0.0028 |
TEIS | 23.55529 | 41.07432 | 0.0009 | −0.0060 | −0.0022 | 0.0017 | 0.0013 | 0.0036 |
037A | 23.90486 | 40.87183 | −0.0004 | −0.0047 | −0.0035 | 0.0036 | 0.0050 | 0.0085 |
GODE | 23.72928 | 41.57587 | 0.0041 | 0.0005 | 0.0052 | 0.0029 | 0.0020 | 0.0070 |
NVRK | 23.86973 | 41.33574 | −0.0037 | −0.0021 | 0.0008 | 0.0098 | 0.0060 | 0.0098 |
KAVA | 24.38731 | 40.93380 | −0.0002 | −0.0049 | 0.0006 | 0.0016 | 0.0022 | 0.0045 |
exx (×10−9) | exy (×10−9) | eyy (×10−9) | σexx (×10−9) | σexy (×10−9) | σeyy (×10−9) | |
---|---|---|---|---|---|---|
Maximum | 481.9268 | 423.2729 | 3141.8433 | 159.7090 | 160.0949 | 294.2601 |
Minimum | −405.7700 | −4307294 | −515.5302 | 0.6234 | 0.7709 | 0.6422 |
Average | −5.4997 | 15.6668 | 74.2570 | 15.5005 | 12.1222 | 15.4766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazos, I.; Papanikolaou, I.; Sboras, S.; Foumelis, M.; Pikridas, C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Appl. Sci. 2022, 12, 9391. https://doi.org/10.3390/app12189391
Lazos I, Papanikolaou I, Sboras S, Foumelis M, Pikridas C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Applied Sciences. 2022; 12(18):9391. https://doi.org/10.3390/app12189391
Chicago/Turabian StyleLazos, Ilias, Ioannis Papanikolaou, Sotirios Sboras, Michael Foumelis, and Christos Pikridas. 2022. "Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults" Applied Sciences 12, no. 18: 9391. https://doi.org/10.3390/app12189391
APA StyleLazos, I., Papanikolaou, I., Sboras, S., Foumelis, M., & Pikridas, C. (2022). Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Applied Sciences, 12(18), 9391. https://doi.org/10.3390/app12189391