Exploration of a Flexible Metasurface for Strain Sensors: A Perspective from 2D Grating Fabrication to Spectral Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.1.1. Proximity Effect Correction
2.1.2. Functionalization
2.1.3. Optical Measurement
2.2. Fabrication and Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, S. Single-order Transmission Diffraction Gratings Based on Dispersion Engineered All-dielectric Metasurfaces. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2016, 33, 1641–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Shao, Z.; Wen, Y.; Qiu, X.; Chen, Y.; Zhang, Y.; Yu, S.; Chen, L. All-dielectric Metasurface Grating for On-chip Multi-channel Orbital Angular Momentum Generation and Detection. Opt. Express 2019, 27, 18794. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.; Mitchell, A.; Sriram, S.; Bhaskaran, M.; Chang, S.; Abbott, D. Flexible Terahertz Metamaterials for Dual-axis Strain Sensing. Opt. Lett. 2013, 38, 2104–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.H.; Choe, J.H.; Kang, B.; Choi, C.G. A Flexible Metamaterial with Negative Refractive Index at Visible Wavelength. Curr. Appl. Phys. 2013, 13, 1723–1727. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, D.; Lim, S. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications. Sensors 2016, 16, 1246. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.X.; Zhang, C.P.; Li, W.D. Dual-Color Flexible Metasurfaces with Polarization-Tunable Plasmons in Gold Nanorod Arrays. Adv. Opt. Mater. 2021, 9, 2001401. [Google Scholar] [CrossRef]
- Wang, P.; Hao, W. Flexible and Stretchable Photonic Sensors Based on Modulation of Light Transmission. Adv. Opt. Mater. 2019, 7, 1900329. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Z.A.; Zhang, S.; Kong, X.; Michaels, W.; Wang, W.; Chen, G.; Liu, D.; Lai, J.-C.; Prine, N.; et al. A Molecular Design Approach Towards Elastic and Multifunctional Polymer Electronics. Nat. Commun. 2021, 12, 5701. [Google Scholar] [CrossRef]
- Matsuhisa, N.; Niu, S.; O’Neill, S.; Kang, J.; Ochiai, Y.; Katsumata, T.; Wu, H.-C.; Ashizawa, M.; Wang, G.-J.N.; Zhong, D.; et al. High-frequency and Intrinsically Stretchable Polymer Diodes. Nature 2021, 12, 5701. [Google Scholar] [CrossRef]
- Anwer, S.; Anjum, D.; Luoc, S.; Abbas, Y.; Lia, B.; Iqbal, S.; Liaoae, K. 2D Ti3C2Tx MXene Nanosheets Coated Cellulose Fibers based 3D Nanostructures for Efficient Water Desalination. Chem. Eng. J. 2020, 406, 126827. [Google Scholar] [CrossRef]
- Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.S.-Y.; Mitchell, A.; Sriram, S.; Bhaskaran, M.; Chang, S.; Abbott, D. Mechanically Tunable Terahertz Metamaterials. Appl. Phys. Lett. 2013, 102, 121101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Lan, C.; Bian, H.; Gao, R.; Zhou, J. Flexible, All-dielectric Metasurface Fabricated via Nanosphere Lithography and its Applications in Sensing. Opt. Express. 2017, 25, 22038–22045. [Google Scholar] [CrossRef]
- Aksu, S.; Huang, M.; Artar, A.; Yanik, A.A.; Selvarasah, S.; Dokmeci, M.R.; Altug, H. Flexible Plasmonics on Unconventional and Nonplanar Substrates. Adv. Mater. 2011, 23, 4422–4430. [Google Scholar] [CrossRef]
- Han, N.R.; Chen, Z.C.; Lim, C.S.; Ng, B.; Hong, M.H. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express. 2011, 19, 6990–6998. [Google Scholar] [CrossRef]
- Bückmann, T.; Stenger, N.; Kadic, M.; Kaschke, J.; Frölich, A.; Kennerknecht, T.; Eberl, C.; Thiel, M.; Wegener, M. Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography. Adv. Mater. 2012, 24, 2710–2714. [Google Scholar] [CrossRef]
- Pryce, I.M.; Aydin, K.; Kelaita, Y.A.; Briggs, R.M.; Atwater, H.A. Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability. Nano Lett. 2010, 10, 4222–4227. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Peng, B.; Li, D.; Zhang, J.; Wong, L.M.; Zhang, Q.; Wang, S.; Xiong, Q. Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing. Nano Lett. 2011, 11, 3232–3238. [Google Scholar] [CrossRef]
- Bahadur, A.; Shoaib, M.; Saeed, A.; Iqbal, S. FT-IR spectroscopic and thermal study of waterborne polyurethane-acrylate leather coatings using tartaric acid as an ionomer. e-Polymers 2016, 16, 463–474. [Google Scholar] [CrossRef]
- Tumkur, T. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 2011, 99, 151115. [Google Scholar] [CrossRef]
- Gupta, V.; Probst, P.T.; Goßler, F.R.; Steiner, A.M.; Schubert, J.; Brasse, Y.; König, T.A.F.; Fery, A. Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly. ACS Appl. Mater. 2019, 11, 28189–28196. [Google Scholar] [CrossRef]
- Meitl, M.A.; Zhu, Z.T.; Kumar, V.; Lee, K.J.; Feng, X.; Huang, Y.Y.; Adesida, I.; Nuzzo, R.G.; Rogers, J.A. Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp. Nat. Mater. 2005, 5, 33–38. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Li, M. Flexible and Tunable Silicon Photonic Circuits on Plastic Substrates. Sci. Rep. 2012, 2, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Subbaraman, H.; Hosseini, A.; Lin, C.-Y.; Kwong, D.; Chen, R.T. Stamp Printing of Silicon-nanomembrane-based Photonic Devices onto Flexible Substrates with a Suspended Configuration. Opt. Lett. 2012, 37, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, Y.; Jeong, H.; Lim, D.; Lim, S. Stretchable screen-printed Metasurfaces for Wireless Strain Sensing Applications. Extrem. Mech. Lett. 2020, 41, 100998. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cook, B.D. PYRAMID-a Hierarchical, Rule-based Approach Toward Proximity Effect Correction. I. Exposure estimation. IEEE Trans. Semicond. Manuf. 1998, 11, 108–116. [Google Scholar] [CrossRef]
- Ochiai, Y.; Manako, S.; Samukawa, S.; Takeuchi, K.; Yamamoto, T. Accurate Nano-EB Lithography for 40-nm Gate MOSFETs. Microelectron Eng. 1996, 30, 415–418. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hu, R.; Ji, J. Representation of Nonrectangular Features for Exposure Estimation and Proximity Effect Correction in Electron-beam Lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. Off. J. Am. Vac. Soc. 2004, 22, 2929–2935. [Google Scholar] [CrossRef]
- Mack, C.A. Electron Beam Lithography Simulation for Mask Making. Microelectron. Eng. 1999, 46, 283–286. [Google Scholar] [CrossRef]
- Grella, L.; Fabrizio, E.D.; Gentili, M.; Baciocchi, M.; Maggiora, R. Proximity Correction for E-beam Patterned Sub-500nm Diffractive Optical Elements. Microelectron. Eng. 1997, 35, 495–498. [Google Scholar] [CrossRef]
- Vericat, M.E.; Vela, M.E.; Benitez, G.; Carro, P.; Salvarezza, R.C. Self-assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-known System. Chem. Soc. Rev. 2010, 39, 1805–1834. [Google Scholar] [CrossRef]
- Kokkin, D.L.; Zhang, R.; Steimle, T.C.; Wyse, I.A.; Pearlman, B.W.; Varberg, T.D. Au–S Bonding Revealed from the Characterization of Diatomic Gold Sulfide, AuS. J. Phys. Chem. A 2015, 119, 11659–11667. [Google Scholar] [CrossRef]
- Curioni, A.; Andreoni, W.; GrNbeck, H. Thiols and Disulfides on the Au(111) Surface: The Headgroup-Gold Interaction. J. Am. Chem. Soc. 2000, 122, 3839–3842. [Google Scholar] [CrossRef]
- Nuzzo, R.G.; Allara, D.L. Adsorption of Bifunctional Organic Disulfides on Gold Surfaces. J. Am. Chem. Soc. 1983, 105, 4481–4483. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V.V. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem. Rev. 2017, 117, 12942–13038. [Google Scholar] [CrossRef]
- Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem. Rev. 2015, 115, 10530–10574. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Mou, L.; Jiang, X. Surface Chemistry of Gold Nanoparticles for Health-related Applications. Chem. Sci. 2020, 11, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lim, H.J.; Jeon, H.; Hong, S.K.; Shin, J.H. MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors. J. Sens. Sci. Technol. 2016, 25, 247–251. [Google Scholar] [CrossRef]
- Leyden, D.E.; Atwater, J.B. Hydrolysis and Condensation of Alkoxysilanes Investigated by Internal Reflection FTIR Spectroscopy. J. Adhes. Sci. Technol. 1991, 5, 815–829. [Google Scholar] [CrossRef]
- Chang, T. Proximity Effect in Electron-beam Lithography. J. Vac. Sci. Technol. 1975, 12, 1271–1275. [Google Scholar] [CrossRef]
- Laible, F.; Gollmer, D.A.; Dickreuter, S.; Kern, D.P.; Fleischer, M. Continuous Reversible Tuning of the Gap Size and Plasmonic Coupling of Bow tie Nanoantennas on Flexible Substrates. Nanoscale 2018, 10, 14915–14922. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.Y.; Li, Z.; Brown, K.A.; O’Brien, M.N.; Ross, M.B.; Zhou, Y.; Butun, S.; Chen, P.-C.; Schatz, G.C.; Dravid, V.P.; et al. Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Lett. 2015, 15, 4699. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Bayanheshig. Exploration of a Flexible Metasurface for Strain Sensors: A Perspective from 2D Grating Fabrication to Spectral Characterization. Appl. Sci. 2022, 12, 10007. https://doi.org/10.3390/app121910007
Hu H, Bayanheshig. Exploration of a Flexible Metasurface for Strain Sensors: A Perspective from 2D Grating Fabrication to Spectral Characterization. Applied Sciences. 2022; 12(19):10007. https://doi.org/10.3390/app121910007
Chicago/Turabian StyleHu, Hao, and Bayanheshig. 2022. "Exploration of a Flexible Metasurface for Strain Sensors: A Perspective from 2D Grating Fabrication to Spectral Characterization" Applied Sciences 12, no. 19: 10007. https://doi.org/10.3390/app121910007
APA StyleHu, H., & Bayanheshig. (2022). Exploration of a Flexible Metasurface for Strain Sensors: A Perspective from 2D Grating Fabrication to Spectral Characterization. Applied Sciences, 12(19), 10007. https://doi.org/10.3390/app121910007