Effect of High Hydrostatic Pressure Processing on Starch Properties of Cassava Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cassava Flour and Slurry Preparation
2.2. HHP Processing of Cassava Flour
2.3. Morphological and Microstructural Analyses
2.3.1. Light and Polarized Microscopy
2.3.2. FTIR-ATR Analysis
2.3.3. X-ray Diffraction (XRD) Analysis
2.4. Determination of Thermal Properties Using Differential Scanning Calorimeter
2.5. Determination of Starch Susceptibility to Human Simulated Digestive Enzymes
2.5.1. Preparation of Digestion Solutions
2.5.2. In Vitro Digestion Procedure
2.5.3. Measurement of Hydrolyzed Starch
2.6. Statistical Analysis
3. Results and Discussion
3.1. Visual Examination of Freshly Treated Cassava Flour
3.2. Birefringence of Cassava Starches in HPP-treated Cassava Flours
3.3. Three-Way ANOVA Results on Starch Properties and In Vitro Starch Digestibility as Affected by Pressure, Flour Concentration, and Holding Time
3.3.1. Short-Range Order of Cassava Starches
3.3.2. Long-Range Order of Cassava Starches
3.3.3. Thermal Properties of HPP-treated Cassava Flours
3.3.4. Digestive Enzyme Susceptibility of Starches from HPP-Treated Cassava Flours
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stapleton, G. Global starch market outlook and competing starch raw materials for by product segment and region. In Proceedings of the Cassava Starch World 2012, Phnom Penh, Cambodia, 22–24 February 2012. [Google Scholar]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Alimi, B.A. Progress in research and applications of cassava flour and starch: A review. J. Food Sci. Technol. 2019, 56, 2799–2813. [Google Scholar] [CrossRef] [PubMed]
- Ocloo, F.C.K.; Ayernor, G.S. Production of alcohol from cassava flour hydrolysate. J. Brew. Distill. 2010, 1, 16–21. [Google Scholar] [CrossRef]
- Aryee, F.N.A.; Oduro, I.; Ellis, W.O.; Afuakwa, J.J. The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control 2006, 17, 916–922. [Google Scholar] [CrossRef]
- Ciacco, C.F.; D’Appolonia, B.L. Baking Studies with Cassava and Yam Flour. I. Biochemical Composition of Cassava and Yam Flour. Cereal Chem. 1978, 55, 402–411. [Google Scholar]
- Kim, H.-S.; Kim, B.-Y.; Baik, M.-Y. Application of Ultra High Pressure (UHP) in Starch Chemistry. Crit. Rev. Food Sci. Nutr. 2012, 52, 123–141. [Google Scholar] [CrossRef]
- Pei-Ling, L.; Xiao-Song, H.; Qun, S. Effect of high hydrostatic pressure on starches: A review. Starch Stärke 2010, 62, 615–628. [Google Scholar] [CrossRef]
- Knorr, D.; Heinz, V.; Buckow, R. High pressure application for food biopolymers. (BBA) Proteins Proteom. 2006, 1764, 619–631. [Google Scholar] [CrossRef]
- Yang, Z.; Chaib, S.; Gu, Q.; Hemar, Y. Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocoll. 2017, 68, 164–177. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.Z.; Arfat, Y.A.; Kumar, V. Effects of High-Pressure Treatment on Functional, Rheological, Thermal and Structural Properties of Thai Jasmine Rice Flour Dispersion. J. Food Process. Preserv. 2017, 41, e12964. [Google Scholar] [CrossRef]
- Zhu, F.; Li, H. Effect of high hydrostatic pressure on physicochemical properties of quinoa flour. LWT 2019, 114, 108367. [Google Scholar] [CrossRef]
- Lin, T.; Fernández-Fraguas, C. Effect of thermal and high-pressure processing on the thermo-rheological and functional properties of common bean (Phaseolus vulgaris L.) flours. LWT 2020, 127, 109325. [Google Scholar] [CrossRef]
- McCann, T.H.; Leder, A.; Buckow, R.; Day, L. Modification of structure and mixing properties of wheat flour through high-pressure processing. Food Res. Int. 2013, 53, 352–361. [Google Scholar] [CrossRef]
- Lee, N.-Y.; Koo, J.-G. Effects of high hydrostatic pressure on quality changes of blends with low-protein wheat and oat flour and derivative foods. Food Chem. 2019, 271, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Hüttner, E.K.; Dal Bello, F.; Arendt, E.K. Fundamental study on the effect of hydrostatic pressure treatment on the bread-making performance of oat flour. Eur. Food Res. Technol. 2010, 230, 827–835. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.Z.; Arfat, Y.A. Particle size, rheological and structural properties of whole wheat flour doughs as treated by high pressure. Int. J. Food Prop. 2017, 20, 1829–1842. [Google Scholar] [CrossRef] [Green Version]
- Ueno, S.; Sasao, S.; Liu, H.; Hayashi, M.; Shigematsu, T.; Kaneko, Y.; Araki, T. Effects of high hydrostatic pressure on β-glucan content, swelling power, starch damage, and pasting properties of high-β-glucan barley flour. High Press. Res. 2019, 39, 509–524. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Attar, H. Structural properties of high-pressure-treated chestnut flour dispersions. Int. J. Food Prop. 2017, 20, S766–S778. [Google Scholar] [CrossRef] [Green Version]
- Perez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Shi, K.; Wang, S.; Chen, J.; Liu, Y.; Huang, Q. Composition, Secondary Structure, and Self-Assembly of Oat Protein Isolate. J. Agric. Food Chem. 2009, 57, 4552–4558. [Google Scholar] [CrossRef]
- Xiao, J.; Niu, L.; Wu, L.; Li, D.; He, H. Preparation of an In Vitro Low-Digestible Rice Starch by Addition of Grass Carp Protein Hydrolysates and Its Possible Mechanisms. Starch Stärke 2019, 71, 1800159. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Wang, F.; Li, J.; Wei, X.; Fu, T.; Cui, L.; Li, T.; Liu, Y. Effect of high speed jet on the physical properties of tapioca starch. Food Hydrocoll. 2015, 49, 35–41. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; Tournois, H.; De Wit, D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhao, B.; Chen, L.; Zheng, B. Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization. Nutrients 2019, 11, 371. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, S.I.; Jan, K.; Singh, S.; Saxena, D.C. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J. Food Sci. Technol. 2015, 52, 5651–5660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, B.R.; Knutson, C.A.; Inglett, G.E.; Walker, C.E. A Differential Scanning Calorimetry Study on the Effect of Annealing on Gelatinization Behavior of Corn Starch. J. Food Sci. 1987, 52, 715–718. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Abduh, S.B.M.; Leong, S.Y.; Agyei, D.; Oey, I. Understanding the Properties of Starch in Potatoes (Solanum tuberosum var. Agria) after Being Treated with Pulsed Electric Field Processing. Foods 2019, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Breuninger, W.F.; Piyachomkwan, K.; Sriroth, K. Chapter 12—Tapioca/Cassava Starch: Production and Use. In Starch, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 541–568. [Google Scholar]
- Asaoka, M.; Blanshard, J.M.V.; Rickard, J.E. Seasonal Effects on the Physico-chemical Properties of Starch from Four Cultivars of Cassava. Starch Stärke 1991, 43, 455–459. [Google Scholar] [CrossRef]
- Pei-Ling, L.; Qing, Z.; Qun, S.; Xiao-Song, H.; Ji-Hong, W. Effect of high hydrostatic pressure on modified noncrystalline granular starch of starches with different granular type and amylase content. LWT 2012, 47, 450–458. [Google Scholar] [CrossRef]
- Katopo, H.; Song, Y.; Jane, J.-l. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym. 2002, 47, 233–244. [Google Scholar] [CrossRef]
- Larrea-Wachtendorff, D.; Sousa, I.; Ferrari, G. Starch-Based Hydrogels Produced by High-Pressure Processing (HPP): Effect of the Starch Source and Processing Time. Food Eng. Rev. 2021, 13, 622–633. [Google Scholar] [CrossRef]
- Vittadini, E.; Carini, E.; Chiavaro, E.; Rovere, P.; Barbanti, D. High pressure-induced tapioca starch gels: Physico-chemical characterization and stability. Eur. Food Res. Technol. 2008, 226, 889–896. [Google Scholar] [CrossRef]
- Cappa, C.; Lucisano, M.; Barbosa-Cánovas, G.V.; Mariotti, M. Physical and structural changes induced by high pressure on corn starch, rice flour and waxy rice flour. Food Res. Int. 2016, 85, 95–103. [Google Scholar] [CrossRef]
- Hüttner, E.K.; Dal Bello, F.; Poutanen, K.; Arendt, E.K. Fundamental evaluation of the impact of high Hydrostatic Pressure on oat batters. J. Cereal Sci. 2009, 49, 363–370. [Google Scholar] [CrossRef]
- Biliaderis, C.G. Chapter 8—Structural Transitions and Related Physical Properties of Starch. In Starch, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 293–372. [Google Scholar]
- Błaszczak, W.; Valverde, S.; Fornal, J. Effect of high pressure on the structure of potato starch. Carbohydr. Polym. 2005, 59, 377–383. [Google Scholar] [CrossRef]
- Song, M.-R.; Choi, S.-H.; Kim, H.-S.; Kim, B.-Y.; Baik, M.-Y. Efficiency of high hydrostatic pressure in preparing amorphous granular starches. Starch Stärke 2015, 67, 790–801. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S.; Ayad, A.; Alli, I.; Alvarez, P. Effect of high-pressure treatment on rheological, thermal and structural changes in Basmati rice flour slurry. J. Cereal Sci. 2007, 46, 148–156. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Ren, X.; Wang, F.; Li, J.; Si, X.; Cao, R.; Yang, R.; Strappe, P.; Blanchard, C. High pressure processing manipulated buckwheat antioxidant activity, anti-adipogenic properties and starch digestibility. J. Cereal Sci. 2015, 66, 31–36. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef]
- Zeng, F.; Li, T.; Gao, Q.; Liu, B.; Yu, S. Physicochemical properties and in vitro digestibility of high hydrostatic pressure treated waxy rice starch. Int. J. Biol. Macromol. 2018, 120, 1030–1038. [Google Scholar] [CrossRef]
- Deng, Y.; Jin, Y.; Luo, Y.; Zhong, Y.; Yue, J.; Song, X.; Zhao, Y. Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules. J. Cereal Sci. 2014, 60, 302–310. [Google Scholar] [CrossRef]
- Stute, R.; Heilbronn; Klingler, R.W.; Boguslawski, S.; Eshtiaghi, M.N.; Knorr, D. Effects of High Pressures Treatment on Starches. Starch Stärke 1996, 48, 399–408. [Google Scholar] [CrossRef]
- Papathanasiou, M.M.; Reineke, K.; Gogou, E.; Taoukis, P.S.; Knorr, D. Impact of high pressure treatment on the available glucose content of various starch types: A case study on wheat, tapioca, potato, corn, waxy corn and resistant starch (RS3). Innov. Food Sci. Emerg. Technol. 2015, 30, 24–30. [Google Scholar] [CrossRef]
- Waigh, T.A.; Gidley, M.J.; Komanshek, B.U.; Donald, A.M. The phase transformations in starch during gelatinisation: A liquid crystalline approach. Carbohydr. Res. 2000, 328, 165–176. [Google Scholar] [CrossRef]
- Cui, R.; Zhu, F. Physicochemical properties and bioactive compounds of different varieties of sweetpotato flour treated with high hydrostatic pressure. Food Chem. 2019, 299, 125129. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | Abs 1047/1022 | Abs 1022/995 | %RC | %RDS | %SDS | %RS |
---|---|---|---|---|---|---|
Pressure | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
FC | 0.061 | 0.601 | <0.001 | 0.011 | 0.010 | <0.001 |
Time | 0.053 | 0.307 | 0.014 | 0.062 | 0.010 | 0.005 |
Pressure ∗ FC | 0.191 | 0.939 | <0.001 | 0.147 | 0.020 | 0.151 |
Pressure ∗ HT | 0.237 | 0.045 | 0.008 | 0.002 | 0.456 | 0.003 |
FC ∗ HT | 0.139 | 0.450 | 0.929 | 0.368 | 0.601 | 0.351 |
Pressure ∗ FC ∗ HT | 0.418 | 0.909 | 0.027 | 0.091 | 0.462 | 0.494 |
Source of Variation | To | Tp | Tc | Trange | ΔH | DG |
---|---|---|---|---|---|---|
Pressure | <0.001 | <0.001 | <0.001 | 0.039 | <0.001 | <0.001 |
FC | 0.018 | 0.323 | 0.797 | 0.216 | <0.001 | <0.001 |
Time | <0.001 | 0.110 | 0.196 | <0.001 | <0.001 | <0.001 |
Pressure ∗ FC | <0.001 | 0.015 | 0.590 | 0.194 | <0.001 | <0.001 |
Pressure ∗ HT | <0.001 | 0.024 | 0.960 | <0.001 | <0.001 | <0.001 |
FC ∗ HT | 0.104 | 0.874 | 0.466 | 0.111 | 0.502 | 0.377 |
Pressure ∗ FC ∗ HT | 0.039 | 0.902 | 0.697 | 0.191 | <0.001 | <0.001 |
Pressure (MPa) | Flour Conc. (% w/v) | 1047/1022 | 1022/995 | ||
---|---|---|---|---|---|
10 min HT | 30 min HT | 10 min HT | 30 min HT | ||
0.10 | 10 | 0.65 ± 0.13 | 0.95 ± 0.03 | ||
(untreated) | 20 | 0.87 ± 0.19 | 0.91 ± 0.25 | ||
30 | 0.80 ± 0.21 | 0.96 ± 0.04 | |||
300 | 10 | 0.99 ± 0.09 | 0.79 ± 0.08 | 0.84 ± 0.16 | 0.94 ± 0.15 |
20 | 0.83 ± 0.19 | 0.75 ± 0.13 | 1.00 ± 0.25 | 0.83 ± 0.09 | |
30 | 0.88 ± 0.06 | 0.84 ± 0.11 | 0.87 ± 0.13 | 0.83 ± 0.21 | |
400 | 10 | 0.83 ± 0.11 | 0.70 ± 0.1 | 0.89 ± 0.12 | 1.07 ± 0.07 |
20 | 0.79 ± 0.16 | 0.76 ± 0.13 | 0.98 ± 0.06 | 0.98 ± 0.18 | |
30 | 0.68 ± 0.11 | 0.84 ± 0.07 | 1.05 ± 0.03 | 1.01 ± 0.06 | |
500 | 10 | 0.61 ± 0.05 | 0.73 ± 0.09 | 1.21 ± 0.24 | 1.27 ± 0.27 |
20 | 0.85 ± 0.18 | 0.67 ± 0.11 | 1.16 ± 0.14 | 1.02 ± 0.13 | |
30 | 0.84 ± 0.10 | 0.87 ± 0.11 | 0.91 ± 0.05 | 1.20 ± 0.14 | |
600 | 10 | 0.63 ± 0.09 | 0.54 ± 0.06 | 1.42 ± 0.32 | 1.09 ± 0.27 |
20 | 0.86 ± 0.26 | 0.53 ± 0.05 | 1.34 ± 0.55 | 0.98 ± 0.21 | |
30 | 0.72 ± 0.15 | 0.66 ± 0.16 | 1.31 ± 0.44 | 1.02 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde, L.A.; Kebede, B.; Leong, S.Y.; Oey, I. Effect of High Hydrostatic Pressure Processing on Starch Properties of Cassava Flour. Appl. Sci. 2022, 12, 10043. https://doi.org/10.3390/app121910043
Conde LA, Kebede B, Leong SY, Oey I. Effect of High Hydrostatic Pressure Processing on Starch Properties of Cassava Flour. Applied Sciences. 2022; 12(19):10043. https://doi.org/10.3390/app121910043
Chicago/Turabian StyleConde, Ladie Anne, Biniam Kebede, Sze Ying Leong, and Indrawati Oey. 2022. "Effect of High Hydrostatic Pressure Processing on Starch Properties of Cassava Flour" Applied Sciences 12, no. 19: 10043. https://doi.org/10.3390/app121910043
APA StyleConde, L. A., Kebede, B., Leong, S. Y., & Oey, I. (2022). Effect of High Hydrostatic Pressure Processing on Starch Properties of Cassava Flour. Applied Sciences, 12(19), 10043. https://doi.org/10.3390/app121910043