No-Reference Quality Assessment of Transmitted Stereoscopic Videos Based on Human Visual System
Abstract
:1. Introduction
2. Previous Relevant Research
3. Materials and Methods
3.1. Applied Datasets
3.2. Proposed Method
3.2.1. Dissimilarity Measure Based on Disparity Index
3.2.2. Edge-Based Perceptual Difference Measure
3.2.3. Final Objective Quality Measure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.; Chen, X.; Pan, Z.; Fan, K.; Li, F.; Lei, J. No-reference stereoscopic image quality assessment based on global and local content characteristics. Neurocomputing 2021, 424, 132–142. [Google Scholar] [CrossRef]
- Varga, D. No-reference video quality assessment using multi-pooled, saliency weighted deep features and decision fusion. Sensors 2022, 22, 2209. [Google Scholar] [CrossRef] [PubMed]
- Imani, H.; Zaim, S.; Islam, M.B.; Junayed, M.S. Stereoscopic Video Quality Assessment Using Modified Parallax Attention Module. In Digitizing Production Systems; Springer: Cham, Switzerland, 2022; pp. 39–50. [Google Scholar]
- Jin, C.; Peng, Z.; Zou, W.; Chen, F.; Jiang, G.; Yu, M. No-Reference Quality Assessment for 3D Synthesized Images Based on Visual-Entropy-Guided Multi-Layer Features Analysis. Entropy 2021, 23, 770. [Google Scholar] [CrossRef]
- Hewage, C.T.; Martini, M.G. Quality of experience for 3D video streaming. IEEE Commun. Mag. 2013, 51, 101–107. [Google Scholar] [CrossRef]
- Biswas, M.; Frater, M.R.; Arnold, J.F.; Pickering, M.R. Improved resilience for video over packet loss networks with MDC and optimized packetization. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 1556–1560. [Google Scholar] [CrossRef]
- Lambooij, M.; Fortuin, M.; Heynderickx, I.; IJsselsteijn, W. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Sci. Technol. 2009, 53, 30201-1. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Barkowsky, M.; Brunnström, K.; Sjöström, M.; Cousseau, R.; Le Callet, P. Perceived 3D TV transmission quality assessment: Multi-laboratory results using absolute category rating on quality of experience scale. IEEE Trans. Broadcast. 2012, 58, 544–557. [Google Scholar] [CrossRef] [Green Version]
- Carreira, J.; Pinto, L.; Rodrigues, N.; Faria, S.; Assuncao, P. Subjective assessment of frame loss concealment methods in 3D video. In Proceedings of the Picture Coding Symposium (PCS), Nagoya, Japan, 8–10 December 2010; pp. 182–185. [Google Scholar]
- Barkowsky, M.; Wang, K.; Cousseau, R.; Brunnström, K.; Olsson, R.; Le Callet, P. Subjective quality assessment of error concealment strategies for 3DTV in the presence of asymmetric transmission errors. In Proceedings of the 2010 18th International Packet Video Workshop (PV), Hong Kong, China, 13–14 December 2010; pp. 193–200. [Google Scholar]
- Zhao, Y.; Zhang, Y.; Yu, L. Subjective Study of Binocular Rivalry in Stereoscopic Images with Transmission and Compression Artifacts. In Proceedings of the 2013 IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, Australia, 15–18 September 2013; pp. 132–135. [Google Scholar]
- Bensalma, R.; Larabi, M.C. A perceptual metric for stereoscopic image quality assessment based on the binocular energy. Multidimens. Syst. Signal Process. 2013, 24, 281–316. [Google Scholar] [CrossRef]
- Alais, D.; Blake, R.; Blake, R. Binocular Rivalry; Bradford book; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Liu, Y.; Huang, B.; Yu, H.; Zheng, Z. No-reference stereoscopic image quality evaluator based on human visual characteristics and relative gradient orientation. J. Vis. Commun. Image Represent. 2021, 81, 103354. [Google Scholar] [CrossRef]
- Zhang, P.; Jamison, K.; Engel, S.; He, B.; He, S. Binocular rivalry requires visual attention. Neuron 2011, 71, 362–369. [Google Scholar] [CrossRef]
- Howard, I.P.; Rogers, B.J. Binocular Vision and Stereopsis; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Ogle, K.N. Some aspects of stereoscopic depth perception. JOSA 1967, 57, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Jiang, G.; Xing, L.; Perkis, A. Quality of visual experience for 3D presentation-stereoscopic image. In High-Quality Visual Experience; Springer: Berlin/Heidelberg, Germany, 2010; pp. 51–77. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campisi, P.; Le Callet, P.; Marini, E. Stereoscopic images quality assessment. In Proceedings of the 2007 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007; pp. 2110–2114. [Google Scholar]
- Yasakethu, S.; Hewage, C.T.; Fernando, W.A.C.; Kondoz, A.M. Quality analysis for 3D video using 2D video quality models. IEEE Trans. Consum. Electron. 2008, 54, 1969–1976. [Google Scholar] [CrossRef]
- Ryu, S.; Kim, D.H.; Sohn, K. Stereoscopic image quality metric based on binocular perception model. In Proceedings of the 2012 19th IEEE International Conference on Image Processing (ICIP), Orlando, FL, USA, 30 September–3 October 2012; pp. 609–612. [Google Scholar]
- Meegan, D.V.; Stelmach, L.B.; Tam, W.J. Unequal weighting of monocular inputs in binocular combination: Implications for the compression of stereoscopic imagery. J. Exp. Psychol. Appl. 2001, 7, 143. [Google Scholar] [CrossRef]
- Benoit, A.; Le Callet, P.; Campisi, P.; Cousseau, R. Quality assessment of stereoscopic images. EURASIP J. Image Video Process. 2008, 2008, 659024. [Google Scholar] [CrossRef] [Green Version]
- Su, C.C.; Bovik, A.C.; Cormack, L.K. Natural scene statistics of color and range. In Proceedings of the 2011 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 11–14 September 2011; pp. 257–260. [Google Scholar]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
- You, J.; Xing, L.; Perkis, A.; Wang, X. Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis. In Proceedings of the International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale, AZ, USA, 13–15 January 2010. [Google Scholar]
- Hewage, C.T.; Martini, M.G. Reduced-reference quality metric for 3D depth map transmission. In Proceedings of the 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Tampere, Finland, 7–9 June 2010; pp. 1–4. [Google Scholar]
- Akhter, R.; Sazzad, Z.P.; Horita, Y.; Baltes, J. No-reference stereoscopic image quality assessment. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 17–21 January 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; p. 75240T. [Google Scholar]
- Wang, X.; Kwong, S.; Zhang, Y. Considering binocular spatial sensitivity in stereoscopic image quality assessment. In Proceedings of the 2011 IEEE Visual Communications and Image Processing (VCIP), Tainan, Taiwan, 6–9 November 2011; pp. 1–4. [Google Scholar]
- Varga, D. No-Reference Video Quality Assessment Based on Benford’s Law and Perceptual Features. Electronics 2021, 10, 2768. [Google Scholar] [CrossRef]
- Dendi, S.V.R.; Channappayya, S.S. No-reference video quality assessment using natural spatiotemporal scene statistics. IEEE Trans. Image Process. 2020, 29, 5612–5624. [Google Scholar] [CrossRef]
- Ebenezer, J.P.; Shang, Z.; Wu, Y.; Wei, H.; Bovik, A.C. No-reference video quality assessment using space-time chips. In Proceedings of the 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24 September 2020; pp. 1–6. [Google Scholar]
- Saad, M.A.; Bovik, A.C.; Charrier, C. Blind Prediction of Natural Video Quality. IEEE Trans. Image Process. 2014, 23, 1352–1365. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Zhu, L.; Lin, W. Deep Learning-based Perceptual Video Quality Enhancement for 3D Synthesized View. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5080–5094. [Google Scholar] [CrossRef]
- Feng, Y.; Li, S.; Chang, Y. Multi-scale feature-guided stereoscopic video quality assessment based on 3D convolutional neural network. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2095–2099. [Google Scholar]
- Cheng, E.; Burton, P.; Burton, J.; Joseski, A.; Burnett, I. RMIT3DV: Pre-announcement of a creative commons uncompressed HD 3D video database. In Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience (QoMEX), Melbourne, VIC, Australia, 5–7 July 2012; pp. 212–217. [Google Scholar]
- Goldmann, L.; De Simone, F.; Ebrahimi, T. A comprehensive database and subjective evaluation methodology for quality of experience in stereoscopic video. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 17–21 January 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; p. 75260S. [Google Scholar]
- Alagoz, B.B. Obtaining depth maps from color images by region based stereo matching algorithms. arXiv 2008, arXiv:0812.1340. [Google Scholar]
- Hasan, M.M.; Arnold, J.F.; Frater, M.R. No-reference quality assessment of 3D videos based on human visual perception. In Proceedings of the 2014 International Conference on 3D Imaging (IC3D), Liege, Belgium, 9–10 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Hasan, M.M.; Ahn, K.; Haque, M.S.; Chae, O. Blocking artifact detection by analyzing the distortions of local properties in images. In Proceedings of the 2011 14th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2011; pp. 475–480. [Google Scholar]
- De Silva, V.; Arachchi, H.K.; Ekmekcioglu, E.; Kondoz, A. Toward an impairment metric for stereoscopic video: A full-reference video quality metric to assess compressed stereoscopic video. IEEE Trans. Image Process. 2013, 22, 3392–3404. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Liu, X.; Kim, D.; Sohn, K. An objective video quality metric for compressed stereoscopic video. Circuits Syst. Signal Process. 2012, 31, 1089–1107. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Q.; Wang, Q.H.; Wu, X. Stereoscopic perceptual video coding based on just-noticeable-distortion profile. IEEE Trans. Broadcast. 2011, 57, 572–581. [Google Scholar] [CrossRef]
Experimental S3D Videos | Name | Disparity | Video Characteristics |
---|---|---|---|
Bicycle Riding | Moderate | Low contrast, high object motion | |
Car Moving | High | Low contrast, low object motion | |
Flag Waving | High | High Contrast, random object motion |
Org. Video Sequence | Disp. Index, | Ed. Diff., | Imp. Video Sequence | Disp. Index, | Ed. Diff., |
---|---|---|---|---|---|
Original 1 | 4.155 | - | Original 1 | 4.155 | - |
Original 2 | 4.164 | 0.1097 | Original 2 | 4.164 | 0.1097 |
Original 3 | 4.172 | 0.1099 | Original 3 | 4.172 | 0.1099 |
Original 4 | 4.149 | 0.1120 | 1% Packet loss 4 | 3.866 | 0.3680 |
Original 5 | 4.166 | 0.1085 | 1% Packet loss 5 | 3.776 | 0.3832 |
Original 6 | 4.162 | 0.1125 | Original 6 | 4.162 | 0.0894 |
Original 7 | 4.160 | 0.1195 | Original 7 | 4.160 | 0.1340 |
Original 8 | 4.158 | 0.1212 | Distorted 8 | 3.497 | 0.4167 |
Original 9 | 4.170 | 0.1238 | Distorted 9 | 3.557 | 0.5743 |
Original 10 | 4.169 | 0.1195 | Distorted & 1% Packet loss 10 | 3.225 | 0.6608 |
Bicycle Riding | Car Moving | Flag Waving | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Original Video | Distorted Video | Original Video | Distorted Video | Original Video | Distorted Video | ||||||
Frm No | Score | Frm No | Score | Frm No | Score | Frm No | Score | Frm No | Score | Frm No | Score |
2 | 0.9436 | 2 | 0.9436 | 2 | 0.9562 | 2 | 0.9562 | 2 | 0.9028 | 2 | 0.9028 |
3 | 0.9433 | 3 | 0.9433 | 3 | 0.9621 | 3 | 0.9621 | 3 | 0.9136 | 3 | 0.9136 |
4 | 0.9322 | Pl 4 | 0.7568 | 4 | 0.9498 | 4 | 0.9498 | 4 | 0.8877 | 4 | 0.8877 |
5 | 0.9426 | Pl 5 | 0.7934 | 5 | 0.9478 | 5 | 0.9478 | 5 | 0.8762 | Pl & Ep5 | 0.7746 |
6 | 0.9439 | 6 | 0.8895 | 6 | 0.9512 | 6 | 0.9512 | 6 | 0.8821 | Pl & Ep6 | 0.7438 |
7 | 0.9400 | 7 | 0.9326 | 7 | 0.9388 | D 7 | 0.7532 | 7 | 0.8946 | Pl & Ep7 | 0.7511 |
8 | 0.9389 | D 8 | 0.6679 | 8 | 0.9522 | D 8 | 0.7725 | 8 | 0.9033 | Pl & Ep8 | 0.7647 |
9 | 0.9395 | D 9 | 0.7010 | 9 | 0.9552 | D 9 | 0.7214 | 9 | 0.9086 | Pl & Ep9 | 0.7781 |
10 | 0.9388 | Pl & D10 | 0.6163 | 10 | 0.9439 | D 10 | 0.6825 | 10 | 0.9055 | Pl & Ep10 | 0.7850 |
Experimental Methods | Reference Criterion | Impairment Parameter | Overall Video Quality Score | ||
---|---|---|---|---|---|
Bicycle Riding | Car Moving | Flag Waving | |||
SSIM [19] | Full Reference | QP 26 | 0.9875 | 0.9763 | 0.9826 |
QP 32 | 0.9545 | 0.9586 | 0.9745 | ||
Packet Loss (1%) | 0.9437 | 0.9325 | 0.9556 | ||
Packet Loss (3%) | 0.9385 | 0.9086 | 0.9305 | ||
Noise & Distortion | 0.8877 | 0.8221 | 0.8936 | ||
StSDlc [42] | Full Reference | QP 26 | 0.9568 | 0.9482 | 0.9536 |
QP 32 | 0.9397 | 0.9222 | 0.9332 | ||
Packet Loss (1%) | 0.7950 | 0.8045 | 0.8536 | ||
Packet Loss (3%) | 0.7859 | 0.7883 | 0.8319 | ||
Noise & Distortion | 0.7134 | 0.7725 | 0.7943 | ||
BLIIND [34] | No Reference | QP 26 | 0.9624 | 0.9611 | 0.9528 |
QP 32 | 0.9555 | 0.9589 | 0.9423 | ||
Packet Loss (1%) | 0.8822 | 0.8524 | 0.8779 | ||
Packet Loss (3%) | 0.7029 | 0.7523 | 0.7884 | ||
Noise & Distortion | 0.7428 | 0.7325 | 0.7621 | ||
Proposed | No Reference | QP 26 | 0.9528 | 0.9598 | 0.9325 |
QP 32 | 0.9438 | 0.9385 | 0.9004 | ||
Packet Loss (1%) | 0.7765 | 0.8026 | 0.7881 | ||
Packet Loss (3%) | 0.6782 | 0.7245 | 0.7011 | ||
Noise & Distortion | 0.6164 | 0.6523 | 0.6286 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Islam, M.A.; Rahman, S.; Frater, M.R.; Arnold, J.F. No-Reference Quality Assessment of Transmitted Stereoscopic Videos Based on Human Visual System. Appl. Sci. 2022, 12, 10090. https://doi.org/10.3390/app121910090
Hasan MM, Islam MA, Rahman S, Frater MR, Arnold JF. No-Reference Quality Assessment of Transmitted Stereoscopic Videos Based on Human Visual System. Applied Sciences. 2022; 12(19):10090. https://doi.org/10.3390/app121910090
Chicago/Turabian StyleHasan, Md Mehedi, Md. Ariful Islam, Sejuti Rahman, Michael R. Frater, and John F. Arnold. 2022. "No-Reference Quality Assessment of Transmitted Stereoscopic Videos Based on Human Visual System" Applied Sciences 12, no. 19: 10090. https://doi.org/10.3390/app121910090
APA StyleHasan, M. M., Islam, M. A., Rahman, S., Frater, M. R., & Arnold, J. F. (2022). No-Reference Quality Assessment of Transmitted Stereoscopic Videos Based on Human Visual System. Applied Sciences, 12(19), 10090. https://doi.org/10.3390/app121910090