Improving Landslide Recognition on UAV Data through Transfer Learning
Abstract
:1. Introduction
2. Study Site and Datasets
2.1. Study Site
2.2. Data Collection
2.3. The Source Domain Datasets
3. Methodology
3.1. UAV Data Acquisition and Processing
3.1.1. Route Planning
3.1.2. Data Preprocessing
3.1.3. DOM Production
3.2. Landslide Detection Based on SSD Model
3.3. Target Detection Based on Transfer Learning
- Step 1.
- Feature extraction: the input image is a two-dimensional matrix, using a trainable filter group to compute the convolution with a step size. Each filter corresponds to a specific feature.
- Step 2.
- Feature maps: an activation function is used to map the results of the filter to ensure the validity of the feature, and the feature map is obtained.
- Step 3.
- Feature pooling: the feature dimensions of any image are in the millions after convolution. If the output was used to train the classifier directly, it would cause overfitting. Therefore, the feature pooling or downsampling is needed. The feature map is divided into disjoint regions with a size, and the average value of these regions is calculated and taken as the pooling feature. The pooled feature dimension is greatly reduced and could be used to train the classifier.
- Step 4.
- Feature parameter transfer: the feature weights obtained from the source domain data pre-training are applicable to the target domain datasets. We choose to freeze all the layers outside of the fully connected layers and retrain an output layer through the target data.
- Step 5.
- Feature classifier: the feature vector obtained based on the transfer learning serves as the input of an SVM categorizer and is used for training the landslide detection model.
4. Experimental Results and Discussion
4.1. Data Labeling
4.2. Model Training and Optimization
4.3. Recognition Result and Evaluation
- True positives (TP): the number of positive samples that are correctly identified as positive;
- False positives (FP): the number of negative samples that are incorrectly identified as positive;
- False negatives (FN): the number of positive samples that are not recognized;
- True negatives (TN): the number of samples correctly classified as negative.
4.3.1. Precision Rate
4.3.2. Recall Rate
4.3.3. P-R Curve (Precision-Recall Curve)
4.3.4. F1-Score
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.D.; Wu, W.; Wang, W.; Liu, M.; Wen, Q. Progress in Disaster Remote Sensing Research in China. J. Remote Sens. 2016, 20, 1170–1184. [Google Scholar]
- Tong, Q.X.; Meng, Q.Y.; Yang, H. Development process and Future prospect of remote sensing Technology. Urban Disaster Reduct. 2018, 6, 2–11. [Google Scholar]
- Qi, T.J.; Zhao, Y.; Meng, X.M.; Chen, G.; Dijkstra, T. AI-Based Susceptibility Analysis of Shallow Landslides Induced by Heavy Rainfall in Tianshui, China. Remote Sens. 2021, 13, 1819. [Google Scholar] [CrossRef]
- Liu, B.; He, K.; Han, M.; Hu, X.W.; Ma, G.T.; Wu, M.Y. Application of UAV and GB-SAR in Mechanism Research and Monitoring of Zhonghaicun Landslide in Southwest China. Remote Sens. 2021, 13, 1653. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake damage assessment of buildings using VHR optical and SAR imagery. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, D.; Guo, H.; Molch, K.; Ma, J.; Pesaresi, M. Identifying damage caused by the 2008 Wenchuan earthquake from VHR remote sensing data. Int. J. Digit. Earth 2009, 2, 309–326. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Q.; Liu, L.; Tang, H.; Liu, T. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography. ISPRS Int. J. Geo-Inf. 2014, 3, 368–390. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, F.; Kouchi, K.I.; Kohiyama, M.; Muraoka, N.; Matsuoka, M. Earthquake damage detection using high-resolution satellite images. In Proceedings of the IGARSS 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 2280–2283. [Google Scholar]
- Pham, B.T.; Prakash, I.; Jaafari, A.; Bui, D.T. Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier. Remote Sens. 2018, 46, 1457–1470. [Google Scholar] [CrossRef]
- Voigt, S.; Schneiderhan, T.; Twele, A.; Gähler, M.; Stein, E.; Mehl, H. Rapid damage assessment and situation mapping: Learning from the 2010 Haiti earthquake. Photogramm. Eng. Remote Sens. 2011, 77, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping; Association Advancement Artificial Intelligence: Palo Alto, CA, USA, 2016; pp. 3929–3935. [Google Scholar]
- Qiao, S.; Qin, S.; Chen, J.; Hu, X.; Ma, Z. The Application of a Three-Dimensional Deterministic Model in the Study of Debris Flow Prediction Based on the Rainfall-Unstable Soil Coupling Mechanism. Processes 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Qin, S.; Qiao, S.; Chen, Y.; Su, G.; Cheng, Q.; Zhang, Y.; Guo, X. Exploring the impact of introducing a physical model into statistical methods on the evaluation of regional scale debris flow susceptibility. Nat. Hazards 2021, 106, 881–912. [Google Scholar] [CrossRef]
- Yao, J.; Qin, S.; Qiao, S.; Che, W.; Chen, Y.; Su, G.; Miao, Q. Assessment of Landslide Susceptibility Combining Deep Learning with Semi-Supervised Learning in Jiaohe County, Jilin Province, China. Appl. Sci. 2020, 10, 5640. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.F.; Luo, Y. Automatic identification and spatial distribution characteristics of the 8·8 Jiuzhaigou earthquake landslide in 2017. J. Remote Sens. 2019, 23, 11. [Google Scholar]
- Stumpf, A.; Kerle, N. Object-oriented Mapping of Landslides Using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Mondini, A.C.; Marchesini, I.; Rossi, M.; Chang, K.T.; Pasquariello, G.; Guzzetti, F. Bayesian Framework for Mapping and Classifying Shallow Landslides Exploiting Remote Sensing and Topographic Data. Geomorphology 2013, 201, 135–147. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Liem, N.V.; Trinh, P.T. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena 2020, 188, 104426. [Google Scholar] [CrossRef]
- Yang, B.; Wang, S.; Zhou, Y.; Wang, F.; Hu, Q.; Chang, Y.; Zhao, Q. Extraction of road blockage information for the Jiuzhaigou earthquake based on a convolution neural network and very-high-resolution satellite images. Earth Sci. Inform. 2019, 13, 115–127. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Elrahman, A. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Boston, MA, USA, 8–10 June 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–9 December 2015; pp. 91–99. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016, arXiv:1605.06409. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multi-box detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 10–16 October 2016; pp. 21–37. [Google Scholar]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.; Nandi, A.K. Landslide Inventory Mapping from Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 982–986. [Google Scholar] [CrossRef]
- Sun, J.; Qin, S.; Qiao, S.; Chen, Y.; Su, G.; Cheng, Q.; Zhang, Y.; Guo, X. Landslide detection from open satellite imagery using distant domain transfer learning. Remote Sens. 2021, 13, 3383. [Google Scholar]
- Jia, Y. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014. [Google Scholar]
- Chan, C.S.; Anderson, D.T.; Ball, J.E. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar]
- Lu, H.; Ma, L.; Fu, X.; Liu, C.; Wang, Z.; Tang, M.; Li, N. Landslides Information Extraction Using Object-Oriented Image Analysis Paradigm Based on Deep Learning and Transfer Learning. Remote Sens. 2020, 12, 752. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, F.; Zhang, H.; Liang, Z. Convolutional neural network based heterogeneous transfer learning for remote-sensing scene classification. Int. J. Remote Sens. 2019, 40, 8506–8527. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis. Remote Sens. 2019, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Zhang, Y.; Pan, S.J.; Yang, Q. Distant Domain Transfer Learning; Assoc Advancement Artificial Intelligence: Palo Alto, CA, USA, 2017; pp. 2604–2610. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1452–1464. [Google Scholar] [CrossRef] [Green Version]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Längkvist, M.; Kiselev, A.; Alirezaie, M.; Loutfi, A. Classification and segmentation of satellite ortho imagery using convolutional neural networks. Remote Sens. 2016, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Chen, Y.; Yang, F.; Chu, T.; Zhou, H. A post-earthquake multiple scene recognition model based on classical SSD method and transfer learning. ISPRS Int. J. Geo-Inf. 2020, 9, 238. [Google Scholar] [CrossRef]
- Haider, S.K.; Jiang, A.; Almogren, A.; Rehman, A.U.; Ahmed, A.; Khan, W.U.; Hamam, H. Energy efficient UAV flight path model for cluster head selection in next-generation wireless sensor networks. Sensors 2021, 21, 8445. [Google Scholar] [CrossRef] [PubMed]
- Lin, T. LabelImg. Git Code. Software. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 5 September 2022).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on heterogeneous Systems, Software. 2015. Available online: https://tensorflow.google.cn (accessed on 5 September 2022).
Parameter | Value |
---|---|
UAV type | Fixed-wing |
Airframe length | 1.07 m |
Wing span | 1.9 m |
Maximum flight altitude | 4500 m |
Maximum flight duration | 1.5 h |
Cruising speed | 60 km/h |
Payload | 3.5 kg |
Index | SSD | Transfer Learning | |
---|---|---|---|
Model | |||
Precision | 90.24% | 95.1% | |
Recall | 35.38% | 90% | |
P-R Curve | 0.64 | 0.88 | |
F1-Score | 51% | 84% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Li, W.; Yang, X.; Zhang, L. Improving Landslide Recognition on UAV Data through Transfer Learning. Appl. Sci. 2022, 12, 10121. https://doi.org/10.3390/app121910121
Yang K, Li W, Yang X, Zhang L. Improving Landslide Recognition on UAV Data through Transfer Learning. Applied Sciences. 2022; 12(19):10121. https://doi.org/10.3390/app121910121
Chicago/Turabian StyleYang, Kaixin, Wei Li, Xinran Yang, and Lei Zhang. 2022. "Improving Landslide Recognition on UAV Data through Transfer Learning" Applied Sciences 12, no. 19: 10121. https://doi.org/10.3390/app121910121
APA StyleYang, K., Li, W., Yang, X., & Zhang, L. (2022). Improving Landslide Recognition on UAV Data through Transfer Learning. Applied Sciences, 12(19), 10121. https://doi.org/10.3390/app121910121