Dynamics of MHD Convection of Walters B Viscoelastic Fluid through an Accelerating Permeable Surface Using the Soret–Dufour Mechanism
Abstract
:1. Introduction
2. Model Equations
3. Numerical Approach: SHAM
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
u | x-axis velocity component (Unit: m/s) |
v | y-axis component (Unit: m/s) |
g | gravity |
D | diffusivity |
β0 | Constant magnetism |
cp | specific heat (Unit: J/kgk) |
qr | radiative heat flux (Unit: W/m2) |
kT | Ratio of thermal diffusion |
cs | concentration susceptivity |
Tw | Temperature (Unit: K) |
Cw | concentration |
k0 | viscoelastic term |
Q0 | heat generation term |
ks | absorption coefficient |
σ* | Stefan-Boltzman |
βt, βc | Thermal expansion and concentration, respectively |
α | Angle of inclination (Unit: degree) |
ϑ | Dimensionless temperature (Unit: K) |
φ | Dimensionless concentration |
T∞ | temperature far from layers (Unit: K) |
C∞ | Concentration far from layers (Unit: mol) |
σ | electrical conductivity |
ρ | Density of liquid (Unit: kg/m3 |
ν | Viscosity of liquid (Unit: m2/s) |
ψ | stream relations (Unit: m2/s) |
η | Distance variable (Unit: dimensionless) |
References
- Alam, M.S.; Rahman, M.M.; Samad, M.A. Dufour and Soret Effects on Unsteady MHD Free Convection and Mass Transfer Flow past a Vertical Porous Plate in a Porous Medium. Nonlinear Anal. Model. Control 2006, 11, 217–226. [Google Scholar] [CrossRef]
- Mahdy, A. Non- Darcy non-newtonian free convection flow over a vertical plate under the influence of Soret and Dufour effect. Int. J. Appl. Mech. Eng. 2008, 13, 1125–1132. [Google Scholar]
- Makinde, O.D. On MHD convection with Soret and Dufour effects past a vertical plate embedded in a porous medium. Lat. Am. Appl. Res. 2011, 41, 63–68. [Google Scholar]
- Cheng, C.-Y. Soret and Dufour Effects on Mixed Convection Heat and Mass Transfer from a Vertical Wedge in a Porous Medium with Constant Wall Temperature and Concentration. Transp. Porous Media 2012, 94, 123–132. [Google Scholar] [CrossRef]
- Moorthy, M.B.K.; Senthilvadivu, K. Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity. J. Appl. Math. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Sharma, B.K.; Yadav, K.; Mishra, N.K.; RChavdhary, C. Soret and Dufour effects on unsteady MHD mixed convec- tion flow past a radiative vertical porous plate embedded in a porous medium with chemical reaction. Appl. Math. 2012, 2012, 717–723. [Google Scholar] [CrossRef]
- Seini, Y.I.; Makinde, O.D. Hydromagnetic flow with Dufour and Soret effect past a vertical plate embedded in porous medium. Math. Theory Model. 2013, 3, 2224–5804. [Google Scholar]
- Uwanta, I.J.; Usman, H. On the influence of Soret and Dufour effects on MHD free convective heat and mass transfer flow over a vertical channel with constant suction and viscous dissipation. Sch. Res. Not. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Aruna, G.; Varma, S.V.; Raju, R.S. Combined influence of Soret and Dufour effect on unsteady hydromagnetic mixed convective flow in an accelerated vertical wavy plate through a porous medium. Int. J. Adv. Appl. Math. Mech. 2015, 3, 122–134. [Google Scholar]
- Tella, H.; Vijaykumar, P.; Naidu, A. Homotopy analysis to Soret and Dufour effects on heat and mass transfer chem- ically reacting fluid past a moving vertical plate with viscous dissipation. IOSR J. Math. 2015, 11, 106–121. [Google Scholar]
- Joneidi, A.A.; Domairry, G.; Babaelahi, M. Homotopy Analysis Method to Walter’s B fluid in a vertical channel with porous wall. Meccanica 2010, 45, 857–868. [Google Scholar] [CrossRef]
- Kumar, A. Mathehmatical Study of Thermosolutal Convection in Heterogeneous Viscoelastic Fluid in the Presence of Porous Medium. Am. J. Math. Anal. 2017, 5, 12–16. [Google Scholar]
- Vijaya, R.B.; Gaffar, S.A.; Venkatadri, K.; Khan, B.m.h. Flow and Thermal Convection of Third Grade Viscoelastic Fluid from a Vertical Porous Plate with Biot Number Effects. Int. J. Math. Arch. 2017, 2017, 109–125. [Google Scholar]
- Pandey, S.D.; Nema, V.K.; Tiwari, S. Charateristic of Walter’s B Visco-elastic Nanofluid Layer Heated from Below. Int. J. Energy Eng. 2016, 6, 7–13. [Google Scholar]
- Moatimid, G.M.; Hassan, M.A. Convection instability of non-Newtonian Walter’s nanofluid along a vertical layer. J. Egypt. Math. Soc. 2017, 25, 220–229. [Google Scholar] [CrossRef]
- Islam, M.M.; Haque, M. Radiative Walter’s memory flow along a vertical cone in induced magnetic field with thermophoretic effect. AIP Conf. Proc. 1851, 020015. [Google Scholar] [CrossRef]
- Rana, G.C.; Chand, R. Rayleigh-Benard Convection in an Elastico-viscous Walters’ (Model B’) Nanofluid Layer. Bull. Pol. A Acad. Sci. Tech. Sci. 2015, 63, 2015. [Google Scholar] [CrossRef]
- Hayat, T.; Hussain, Z.; Alsaedi, A. Influence of heterogeneous-homogeneous reactions in thermally stratified stagnation point flow of an Oldroyd-B fluid. Results Phys. 2016, 6, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, M.B.K.; Kannan, T.; Senthilvadivu, K.; Rangasamy, K.S. Soret and Dufour effects on natural convection heat and mass transfer flow past a horizontal surface in a porous medium with variable viscosity. WSEAS Trans. Heat Mass Transf. 2013, 8, 2224–3461. [Google Scholar]
- Lavanya, B.; Ratnam, A.L. Dufour and Soret effects on steady MHD free convective flow past a vertical porous plate embedded in a porous medium with chemical reaction, radiation heat generation an viscous dissipation. Adv. Appl. Sci. Res. 2014, 5, 127–142. [Google Scholar]
- Reddy, G.V.R.; Subrahmanyam, S.V.; Satishkumar, d. Soret effect on MHD mixed convection oscillatory flow over a vertical surface in a porous medium with chemical reaction and thermal radiation. Ultra Sci. 2014, 26, 49–60. [Google Scholar]
- Krishna, P.M.; Vidyasagar, G.; Sandeep, N.; Sugunamma, V. Soret and Dufour effect on MHD free convective flow over a permeable stretching surface with chemical reaction and heat source. Int. J. Sci. Eng. Res. 2015, 6, 143–147. [Google Scholar]
- Srinivasacharya, D.; Mallikarjuna, B.; Bhuvanavijaya, R. Soret and Dufour effect of mixed convection along a vertical wavy surface in a porous medium with variable properties. Ain Shams Eng. J. 2015, 6, 553–564. [Google Scholar] [CrossRef]
- Motsa, S.S.; Sibanda, P.; Shateyi, S. A New Spectral Homotopy Analysis Method for Solving a Nonlinear Second Order BVP. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2293–2302. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Z.; Sun, M.; Yu, Y.; Wang, J.; Cai, S. The Influence of the Temperature on the Dynamic Behaviors of Magnetorheological Gel. Adv. Eng. Mater. 2022, 2101680. [Google Scholar] [CrossRef]
- Motsa, S.S.; Awad, F.G.; Makukula, Z.G.; Sibanda, P. The Spectral Homotopy Analysis Method Extended to Systems of Partial Differential Equations. Abstr. Appl. Anal. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Motsa, S.S.; Makukula, Z.G. On a Bivariate Spectral Homotopy Analysis Method for Unsteady Mixed Convection Boundary Layer Flow, Heat, and Mass Transfer due to a Stretching Surface in a Rotating Fluid. J. Appl. Math. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Fagbade, A.; Falodun, B.; Omowaye, A. MHD natural convection flow of viscoelastic fluid over an accelerating permeable surface with thermal radiation and heat source or sink: Spectral Homotopy Analysis Approach. Ain Shams Eng. J. 2018, 9, 1029–1041. [Google Scholar] [CrossRef]
- Motsa, S.S.; Marewo, G.T.; Sibanda, P.; Shateyi, S. An improved spectral homotopy analysis method for solving boundary layer problems. Bound. Value Probl. 2011, 2011, 3–9. Available online: http://www.boundaryvalueproblems.com/content/2011/1/3 (accessed on 10 July 2022). [CrossRef]
- Yang, S.; Li, X.; Yu, T.; Wang, J.; Fang, H.; Nie, F.; He, B.; Zhao, L.; Lü, W.; Yan, S. High-Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry. Adv. Funct. Mater. 2022, 32, 2202366. [Google Scholar] [CrossRef]
- Fagbade, A.I.; Falodun, B.O.; Boneze, C.U. Influence of Magnetic Field, Viscous Dissipation and Thermophoresis on Darcy-Forcheimer Mixed Convection Flow in Fluid Saturated Porous Media. Am. J. Comput. Math. 2015, 05, 18–40. [Google Scholar] [CrossRef]
- Mehmood, A.; Ali, A.; Shah, T. Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 902–912. [Google Scholar] [CrossRef]
- Walter, K. Non-Newtonian effects in some elastico-viscous liquids whose behavior at some states of shear is characterized by general equation of state. Q. J. Mech. Appl. Math. 1962, 15, 63–76. [Google Scholar] [CrossRef]
- Liao, S.J. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Verlag/Berlin, Germany, 1988. [Google Scholar]
- Fornberg, B. A Practical Guide to Pseudospectral Methods; Cambridge Univ. Press: New York, NY, USA, 1996. [Google Scholar]
- Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Sun, L.; Wang, G.; Zhang, C.; Jin, Q.; Song, Y. On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid. Nanotechnol. Rev. 2021, 10, 1339–1348. [Google Scholar] [CrossRef]
- Ullah, A.; Ikramullah; Selim, M.M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A. A Magnetite–Water-Based Nanofluid Three-Dimensional Thin Film Flow on an Inclined Rotating Surface with Non-Linear Thermal Radiations and Couple Stress Effects. Energies 2021, 14, 5531. [Google Scholar] [CrossRef]
- Khan, S.; Selim, M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ikramullah; Ayaz, M.; Mashwani, W. On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer. Coatings 2021, 11, 566. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, J.; Zhang, Z.; Sun, M.; Yu, Y.; Wang, J.; Cai, S. Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment. Smart Mater. Struct. 2022, 31, 075008. [Google Scholar] [CrossRef]
- Nawaz, R.; Hussain, Z.; Khattak, A.; Khan, A. Extension of Optimal Homotopy Asymptotic Method with Use of Daftardar–Jeffery Polynomials to Coupled Nonlinear-Korteweg-De-Vries System. Complexity 2020, 2020, 1–6. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Ullah, A.; Khan, S.N.; Selim, M.M. Mesoscopic Simulation for Magnetized Nanofluid Flow Within a Permeable 3D Tank. IEEE Access 2021, 9, 135234–135244. [Google Scholar] [CrossRef]
β | Gt | Cf | Nu | Sh |
---|---|---|---|---|
0.0 | 0 | 0.35362 | 0.65313 | 0.92109 |
0.5 | 0.53971 | 0.67986 | 0.94349 | |
1 | 0.72152 | 0.70418 | 0.96415 | |
2 | 1.07430 | 0.74707 | 1.001256 | |
0.01 | 0 | 0.35618 | 0.65291 | 0.92095 |
0.5 | 0.54379 | 0.67981 | 0.94351 | |
1 | 0.72714 | 0.0.70430 | 0.96431 | |
2 | 1.08301 | 0.0.74750 | 1.00168 | |
0.05 | 0 | 0.36766 | 0.65211 | 0.92051 |
0.5 | 0.56172 | 0.67975 | 0.94369 | |
1 | 0.75155 | 0.70493 | 0.96508 | |
2 | 1.12046 | 0.74942 | 1.00358 |
β = 0, Sw = 0.02 | β = 0.01, Sw = 0.06 | ||||||
---|---|---|---|---|---|---|---|
α | Sr | Cf | Nu | Sh | Cf | Nu | Sh |
0.0 | 0 | 1.09417 | 0.70364 | 1.01421 | 1.05091 | 0.74833 | 1.06656 |
0.5 | 1.13712 | 0.74918 | 0.88981 | 1.09354 | 0.79586 | 0.92930 | |
1 | 1.18712 | 0.80057 | 0.74683 | 1.14279 | 0.84920 | 0.77128 | |
2 | 1.31471 | 0.92566 | 0.38704 | 1.26665 | 0.97771 | 0.37455 | |
0.02 | 0 | 1.09968 | 0.69008 | 1.01670 | 1.05523 | 0.73602 | 1.06848 |
0.5 | 1.14095 | 0.73666 | 0.89450 | 1.09652 | 0.78449 | 0.93333 | |
1 | 1.18941 | 0.78945 | 0.75314 | 1.14456 | 0.83905 | 0.77707 | |
2 | 1.31473 | 0.91886 | 0.39461 | 1.26665 | 0.97114 | 0.38196 | |
0.08 | 0 | 1.11955 | 0.64363 | 1.02623 | 1.06975 | 0.69593 | 1.07521 |
0.5 | 1.15414 | 0.69539 | 0.91000 | 1.10609 | 0.74877 | 0.94608 | |
1 | 1.19652 | 0.75529 | 0.77245 | 1.14970 | 0.80902 | 0.79406 | |
2 | 1.31363 | 0.90744 | 0.40934 | 1.26587 | 0.95815 | 0.39801 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anusha, P.; Sri, M.N.S.; Madhav, V.V.V.; Chaitanya, C.S.; Spandana, V.V.; Saxena, K.K.; Abdul-Zahra, D.S.; Linul, E.; Prakash, C.; Budhi, D.; et al. Dynamics of MHD Convection of Walters B Viscoelastic Fluid through an Accelerating Permeable Surface Using the Soret–Dufour Mechanism. Appl. Sci. 2022, 12, 9431. https://doi.org/10.3390/app12199431
Anusha P, Sri MNS, Madhav VVV, Chaitanya CS, Spandana VV, Saxena KK, Abdul-Zahra DS, Linul E, Prakash C, Budhi D, et al. Dynamics of MHD Convection of Walters B Viscoelastic Fluid through an Accelerating Permeable Surface Using the Soret–Dufour Mechanism. Applied Sciences. 2022; 12(19):9431. https://doi.org/10.3390/app12199431
Chicago/Turabian StyleAnusha, P., M. Naga Swapna Sri, V.V. Venu Madhav, Ch. Sri Chaitanya, V.V. Spandana, Kuldeep K. Saxena, Dalael Saad Abdul-Zahra, Emanoil Linul, Chander Prakash, Dharam Budhi, and et al. 2022. "Dynamics of MHD Convection of Walters B Viscoelastic Fluid through an Accelerating Permeable Surface Using the Soret–Dufour Mechanism" Applied Sciences 12, no. 19: 9431. https://doi.org/10.3390/app12199431
APA StyleAnusha, P., Sri, M. N. S., Madhav, V. V. V., Chaitanya, C. S., Spandana, V. V., Saxena, K. K., Abdul-Zahra, D. S., Linul, E., Prakash, C., Budhi, D., & Campilho, R. (2022). Dynamics of MHD Convection of Walters B Viscoelastic Fluid through an Accelerating Permeable Surface Using the Soret–Dufour Mechanism. Applied Sciences, 12(19), 9431. https://doi.org/10.3390/app12199431