Relevance of the Operator’s Experience in Conditioning the Static Computer-Assisted Implantology: A Comparative In Vitro Study with Three Different Evaluation Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digital and Operative Flow-Chart
2.2. Measurement Parameters for Accuracy Analysis
2.3. Measurement Parameters for Operative Timing Analysis
2.4. Statistical Analysis
3. Results
3.1. Accuracy
3.2. Operative Timings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pellegrino, G.; Lizio, G.; Ferri, A.; Marchetti, C. Flapless and bone-preserving extraction of partially impacted mandibular third molars with dynamic navigation technology. A report of three cases. Int. J. Comput. Dent. 2021, 24, 253–262. [Google Scholar]
- Abduo, J.; Lau, D. Accuracy of static computer-assisted implant placement in long span edentulous area by novice implant clinicians: A cross-sectional in vitro study comparing fully-guided, pilot-guided, and freehand implant placement protocols. Clin. Implant Dent. Relat. Res. 2021, 23, 361–372. [Google Scholar] [CrossRef]
- Pellegrino, G.; Bellini, P.; Cavallini, P.F.; Ferri, A.; Zacchino, A.; Taraschi, V.; Marchetti, C.; Consolo, U. Dynamic Navigation in Dental Implantology: The Influence of Surgical Experience on Implant Placement Accuracy and Operating Time. An in Vitro Study. Int. J. Environ. Res. Public Health 2020, 17, 2153. [Google Scholar] [CrossRef]
- Tahmaseb, A.; Wu, V.; Wismeijer, D.; Coucke, W.; Evans, C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clin. Oral Implants Res. 2018, 29 (Suppl. S16), 416–435. [Google Scholar] [CrossRef]
- Younes, F.; Eghbali, A.; De Bruyckere, T.; Cleymaet, R.; Cosyn, J. A randomized controlled trial on the efficiency of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. Clin. Oral Implants Res. 2019, 30, 131–138. [Google Scholar] [CrossRef]
- Vermeulen, J. The Accuracy of Implant Placement by Experienced Surgeons: Guided vs. Freehand Approach in a Simulated Plastic Model. Int. J. Oral Maxillofac. Implants 2017, 32, 617–624. [Google Scholar] [CrossRef]
- Naeini, E.N.; Atashkadeh, M.; De Bruyn, H.; D’Haese, J. Narrative review regarding the applicability, accuracy, and clinical outcome of flapless implant surgery with or without computer guidance. Clin. Implant Dent. Relat. Res. 2020, 22, 454–467. [Google Scholar] [CrossRef]
- Joda, T.; Derksen, W.; Wittneben, J.G.; Kuehl, S. Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: A systematic review. Clin. Oral Implants Res. 2018, 29 (Suppl. S16), 359–373. [Google Scholar] [CrossRef]
- Vercruyssen, M.; Laleman, I.; Jacobs, R.; Quirynen, M. Computer-supported implant planning and guided surgery: A narrative review. Clin. Oral Implants Res. 2015, 26 (Suppl. S11), 69–76. [Google Scholar] [CrossRef]
- Elliott, T.; Hamilton, A.; Griseto, N.; Gallucci, G.O. Additively Manufactured Surgical Implant Guides: A Review. J. Prosthodont. 2022, 31 (Suppl. S1), 38–46. [Google Scholar] [CrossRef]
- Anadioti, E.; Kane, B.; Zhang, Y.; Bergler, M.; Mante, F.; Blatz, M.B. Accuracy of Dental and Industrial 3D Printers. J. Prosthodont. 2022, 31 (Suppl. S1), 30–37. [Google Scholar] [CrossRef]
- Derksen, W.; Wismeijer, D.; Flügge, T.; Hassan, B.; Tahmaseb, A. The accuracy of computer-guided implant surgery with tooth-supported, digitally designed drill guides based on CBCT and intraoral scanning. A prospective cohort study. Clin. Oral Implants Res. 2019, 30, 1005–1015. [Google Scholar] [CrossRef]
- Cassetta, M.; Bellardini, M. How much does experience in guided implant surgery play a role in accuracy? A randomized controlled pilot study. Int. J. Oral Maxillofac. Surg. 2017, 46, 922–930. [Google Scholar] [CrossRef]
- Van de Wiele, G.; Teughels, W.; Vercruyssen, M.; Coucke, W.; Temmerman, A.; Quirynen, M. The accuracy of guided surgery via mucosa-supported stereolithographic surgical templates in the hands of surgeons with little experience. Clin. Oral Implants Res. 2015, 26, 1489–1494. [Google Scholar] [CrossRef]
- Van Assche, N.; Quirynen, M. Tolerance within a surgical guide. Clin. Oral Implants Res. 2010, 21, 455–458. [Google Scholar] [CrossRef]
- Cassetta, M.; Altieri, F.; Giansanti, M.; Bellardini, M.; Brandetti, G.; Piccoli, L. Is there a learning curve in static computer-assisted implant surgery? A prospective clinical study. Int. J. Oral Maxillofac. Surg. 2020, 49, 1335–1342. [Google Scholar] [CrossRef]
- Bover-Ramos, F.; Viña-Almunia, J.; Cervera-Ballester, J.; Peñarrocha-Diago, M.; García-Mira, B. Accuracy of Implant Placement with Computer-Guided Surgery: A Systematic Review and Meta-Analysis Comparing Cadaver, Clinical, and In Vitro Studies. Int. J. Oral Maxillofac. Implants 2018, 33, 101–115. [Google Scholar] [CrossRef]
- Verhamme, L.M.; Meijer, G.J.; Boumans, T.; Schutyser, F.; Bergé, S.J.; Maal, T.J.J. A clinically relevant validation method for implant placement after virtual planning. Clin. Oral Implants Res. 2013, 24, 1265–1272. [Google Scholar] [CrossRef]
- Skjerven, H.; Olsen-Bergem, H.; Rønold, H.J.; Riis, U.H.; Ellingsen, J.E. Comparison of postoperative intraoral scan versus cone beam computerised tomography to measure accuracy of guided implant placement—A prospective clinical study. Clin. Oral Implants Res. 2019, 30, 531–541. [Google Scholar] [CrossRef]
- Park, J.H.; Hwang, C.J.; Choi, Y.J.; Houschyar, K.S.; Yu, J.-H.; Bae, S.-Y.; Cha, J.-Y. Registration of digital dental models and cone-beam computed tomography images using 3-dimensional planning software: Comparison of the accuracy according to scanning methods and software. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 843–851. [Google Scholar] [CrossRef]
- Kessler, A.; Le, V.; Folwaczny, M. Influence of the tooth position, guided sleeve height, supporting length, manufacturing methods, and resin E-modulus on the in vitro accuracy of surgical implant guides in a free-end situation. Clin. Oral Implants Res. 2021, 32, 1097–1104. [Google Scholar] [CrossRef]
- Schnutenhaus, S.; Edelmann, C.; Rudolph, H. Does the macro design of an implant affect the accuracy of template-guided implantation? A prospective clinical study. Int. J. Implant Dent. 2021, 7, 42. [Google Scholar] [CrossRef]
- Jemt, T.; Olsson, M.; Renouard, F.; Stenport, V.; Friberg, B. Early Implant Failures Related to Individual Surgeons: An Analysis Covering 11,074 Operations Performed during 28 Years. Clin. Implant Dent. Relat. Res. 2016, 18, 861–872. [Google Scholar] [CrossRef]
- Varga, E., Jr.; Antal, M.; Major, L.; Kiscsatári, R.; Braunitzer, G.; Piffkó, J. Guidance means accuracy: A randomized clinical trial on freehand versus guided dental implantation. Clin. Oral Implants Res. 2020, 31, 417–430. [Google Scholar] [CrossRef]
- Jorba-García, A.; González-Barnadas, A.; Camps-Font, O.; Figueiredo, R.; Valmaseda-Castellón, E. Accuracy assessment of dynamic computer-aided implant placement: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 2479–2494. [Google Scholar] [CrossRef]
- Fernández-Gil, Á.; Gil, H.S.; Velasco, M.G.; Vázquez, J. An In Vitro Model to Evaluate the Accuracy of Guided Implant Placement Based on the Surgeon’s Experience. Int. J. Oral Maxillofac. Implants 2017, 32, 515–524. [Google Scholar] [CrossRef]
- Pettersson, A.; Kero, T.; Söderberg, R.; Näsström, K. Accuracy of virtually planned and CAD/CAM-guided implant surgery on plastic models. J. Prosthet. Dent. 2014, 112, 1472–1478. [Google Scholar] [CrossRef]
- Cushen, S.E.; Turkyilmaz, I. Impact of operator experience on the accuracy of implant placement with stereolithographic surgical templates: An in vitro study. J. Prosthet. Dent. 2013, 109, 248–254. [Google Scholar] [CrossRef]
- Cunha, R.M.; Souza, F.A.; Hadad, H.; Poli, P.P.; Maiorana, C.; Carvalho, P.S.P. Accuracy evaluation of computer-guided implant surgery associated with prototyped surgical guides. J. Prosthet. Dent. 2021, 125, 266–272. [Google Scholar] [CrossRef]
- Block, M.S.; Emery, R.W.; Lank, K.; Ryan, J. Implant Placement Accuracy Using Dynamic Navigation. Int. J. Oral Maxillofac. Implants 2017, 32, 92–99. [Google Scholar] [CrossRef]
- Franchina, A.; Stefanelli, L.V.; Maltese, F.; Mandelaris, G.A.; Vantaggiato, A.; Pagliarulo, M.; Pranno, N.; Brauner, E.; Angelis, F.D.; Carlo, S.D. Validation of an Intra-Oral Scan Method Versus Cone Beam Computed Tomography Superimposition to Assess the Accuracy between Planned and Achieved Dental Implants: A Randomized In Vitro Study. Int. J. Environ. Res. Public Health 2020, 17, 9358. [Google Scholar] [CrossRef]
- Choi, D.; Yoon, Y.S.; Hwang, D. Evaluation of sleeved implant fixation using a rat model. Med. Eng. Phys. 2011, 33, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Kiatkroekkrai, P.; Takolpuckdee, C.; Subbalekha, K.; Mattheos, N.; Pimkhaokham, A. Accuracy of implant position when placed using static computer-assisted implant surgical guides manufactured with two different optical scanning techniques: A randomized clinical trial. Int. J. Oral Maxillofac. Surg. 2020, 49, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Tallarico, M.; Xhanari, E.; Kim, Y.J.; Cocchi, F.; Martinolli, M.; Alushi, A.; Baldoni, E.; Meloni, S.M. Accuracy of computer-assisted template-based implant placement using conventional impression and scan model or intraoral digital impression: A randomised controlled trial with 1 year of follow-up. Int. J. Oral Implantol. 2019, 12, 197–206. [Google Scholar]
- Putra, R.H.; Yoda, N.; Astuti, E.R.; Sasaki, K. The accuracy of implant placement with computer-guided surgery in partially edentulous patients and possible influencing factors: A systematic review and meta-analysis. J. Prosthodont. Res. 2022, 66, 29–39. [Google Scholar] [CrossRef]
- Pyo, S.W.; Lim, Y.J.; Koo, K.T.; Lee, J. Methods Used to Assess the 3D Accuracy of Dental Implant Positions in Computer-Guided Implant Placement: A Review. J. Clin. Med. 2019, 8, 54. [Google Scholar] [CrossRef]
- Stefanelli, L.V.; Franchina, A.; Pranno, A.; Pellegrino, G.; Ferri, A.; Pranno, N.; Di Carlo, S.; De Angelis, F. Use of Intraoral Scanners for Full Dental Arches: Could Different Strategies or Overlapping Software Affect Accuracy? Int. J. Environ. Res. Public Health 2021, 18, 9946. [Google Scholar] [CrossRef]
Parameters of Evaluation | Three Methods Results Mean Values | Means Values’ Differential between the Operators | HSD-Test | p Value | |
---|---|---|---|---|---|
Operator 1 | Operator 2 | ||||
Ed point | 0.5728 | 0.8505 | 0.2777 | 16.2522 * | >0.0001 |
Edx | 0.1489 | 0.1983 | 0.0494 | 6.1613 * | 0.0031 |
Edy | 0.2655 | 0.4597 | 0.1942 | 11.7764 * | >0.0001 |
Edz | 0.3980 | 0.5842 | 0.1862 | 7.7265 * | 0.0002 |
Ad point | 0.6084 | 0.9533 | 0.3449 | 20.4794 * | >0.0001 |
Adx | 0.1671 | 0.2436 | 0.0765 | 8.8757 * | 0.0002 |
Ady | 0.3035 | 0.5516 | 0.2481 | 14.1916 * | >0.0001 |
Adz | 0.4028 | 0.5721 | 0.1693 | 6.9093 * | 0.001 |
Ang | 1.0424 | 1.6463 | 0.6039 | 21.6030 * | >0.0001 |
Methods of Evaluation | Operator | Parameters | Edx | Edy | Edz | Ed | Adx | Ady | Adz | Ad | Ang |
---|---|---|---|---|---|---|---|---|---|---|---|
n.1 | 1 | mean | 0.14 | 0.16 | 0.74 | 0.8 | 0.15 | 0.25 | 0.76 | 0.85 | 1.05 |
SD | 0.10 | 0.13 | 0.45 | 0.43 | 0.10 | 0.21 | 0.44 | 0.39 | 0.53 | ||
minimum | 0.00 | 0.01 | 0.08 | 0.22 | 0.17 | 0.00 | 0.03 | 0.36 | 0.24 | ||
maximum | 0.34 | 0.61 | 1.92 | 1.92 | 0.41 | 1.15 | 1.92 | 1.93 | 2.13 | ||
2 | mean | 0.28 | 0.31 | 0.75 | 0.91 | 0.28 | 0.43 | 0.77 | 1.02 | 1.78 | |
SD | 0.19 | 0.22 | 0.49 | 0.46 | 0.22 | 0.3 | 0.5 | 0.45 | 1.12 | ||
minimum | 0.41 | 0.01 | 0.00 | 0.19 | 0.00 | 0.01 | 0.01 | 0.24 | 0.13 | ||
maximum | 0.83 | 0.76 | 2.02 | 2.15 | 0.88 | 1.11 | 1.96 | 2.27 | 4.13 | ||
n.2 | 1 | mean | 0.15 | 0.3 | 0.22 | 0.45 | 0.18 | 0.32 | 0.22 | 0.48 | 1.03 |
SD | 0.12 | 0.2 | 0.19 | 0.23 | 0.13 | 0.25 | 0.18 | 0.24 | 0.47 | ||
minimum | 0.00 | 0.01 | 0.01 | 0.16 | 0.02 | 0.01 | 0.01 | 0.21 | 0.11 | ||
maximum | 0.5 | 0.71 | 0.92 | 1.18 | 0.63 | 1.07 | 0.84 | 1.36 | 2.19 | ||
2 | mean | 0.16 | 0.58 | 0.52 | 0.87 | 0.23 | 0.57 | 0.53 | 0.95 | 1.58 | |
SD | 0.13 | 0.36 | 0.41 | 0.45 | 0.19 | 0.43 | 0.45 | 0.42 | 0.97 | ||
minimum | 0.01 | 0.07 | 0.07 | 0.13 | 0.01 | 0.01 | 0.07 | 0.24 | 0.04 | ||
maximum | 0.49 | 1.23 | 1.65 | 1.77 | 0.64 | 1.5 | 1.78 | 1.79 | 3.62 | ||
n.3 | 1 | mean | 0.15 | 0.33 | 0.23 | 0.47 | 0.17 | 0.34 | 0.23 | 0.49 | 1.05 |
SD | 0.1 | 0.27 | 0.15 | 0.27 | 0.14 | 0.25 | 0.15 | 0.25 | 0.57 | ||
minimum | 0.01 | 0.01 | 0.00 | 0.09 | 0.00 | 0.01 | 0.01 | 0.06 | 0.21 | ||
maximum | 0.4 | 0.86 | 0.65 | 1.04 | 0.55 | 0.89 | 0.63 | 1.06 | 2.66 | ||
2 | mean | 0.15 | 0.49 | 0.48 | 0.77 | 0.22 | 0.65 | 0.41 | 0.89 | 1.58 | |
SD | 0.11 | 0.32 | 0.33 | 0.34 | 0.17 | 0.42 | 0.27 | 0.36 | 0.83 | ||
minimum | 0.01 | 0.03 | 0.02 | 0.07 | 0.01 | 0.04 | 0.02 | 0.3 | 0.08 | ||
maximum | 0.43 | 1.24 | 1.05 | 1.44 | 0.63 | 1.65 | 1.01 | 1.77 | 3.19 |
Parameters of Evaluation | Evaluation Methods’ Comparison | Operators’ Mean Values’ for Each Method | Mean Values’ Difference | HSD-Test | p Value | |
---|---|---|---|---|---|---|
Ed | n.1 vs n.2 | 0.8564 | 0.6209 | 0.1987 | 9.4939 * | >0.05 |
n.1 vs. n.3 | 0.8564 | 0.6209 | 0.2355 | 11.2534 * | >0.05 | |
n.2 vs. n.3 | 0.6577 | 0.1560 | 0.0368 | 1.7594 | <0.05 | |
Edx | n.1 vs. n.2 | 0.2147 | 0.1501 | 0.0586 | 5.9700 * | >0.05 |
n.1 vs. n.3 | 0.2147 | 0.1501 | 0.0646 | 6.5715 * | >0.05 | |
n.2 vs. n.3 | 0.1560 | 0.4414 | 0.0059 | 0.6015 | <0.05 | |
Edy | n.1 vs. n.2 | 0.2345 | 0.4120 | 0.2069 | 10.2443 * | >0.05 |
n.1 vs. n.3 | 0.2345 | 0.4120 | 0.1776 | 8.7926 * | >0.05 | |
n.2 vs. n.3 | 0.4414 | 0.3717 | 0.0293 | 1.4518 | <0.05 | |
Edz | n.1 vs. n.2 | 0.7485 | 0.3532 | 0.3768 | 12.7676 * | >0.05 |
n.1 vs. n.3 | 0.7485 | 0.3532 | 0.3953 | 13.3953 * | >0.05 | |
n.2 vs. n.3 | 0.3717 | 0.7185 | 0.0185 | 0.6277 | <0.05 | |
Ad | n.1 vs. n.2 | 0.9335 | 0.6905 | 0.2150 | 10.4235 * | >0.05 |
n.1 vs. n.3 | 0.9335 | 0.6905 | 0.2431 | 11.7842 * | >0.05 | |
n.2 vs. n.3 | 0.7185 | 0.2019 | 0.0281 | 1.3607 | <0.05 | |
Adx | n.1 vs. n.2 | 0.2166 | 0.1974 | 0.0147 | 1.3931 | <0.05 |
n.1 vs. n.3 | 0.2166 | 0.1974 | 0.0193 | 1.8236 | <0.05 | |
n.2 vs. n.3 | 0.2019 | 0.4486 | 0.0045 | 0.4305 | <0.05 | |
Ady | n.1 vs. n.2 | 0.3387 | 0.4952 | 0.1099 | 5.1349 * | >0.05 |
n.1 vs. n.3 | 0.3387 | 0.4952 | 0.1565 | 7.3113 * | >0.05 | |
n.2 vs. n.3 | 0.4486 | 0.3759 | 0.0466 | 2.1763 | <0.05 | |
Adz | n.1 vs. n.2 | 0.7626 | 0.3239 | 0.3867 | 12.8877 * | >0.05 |
n.1 vs. n.3 | 0.7626 | 0.3239 | 0.4387 | 14.6223 * | >0.05 | |
n.2 vs. n.3 | 0.3759 | 1.3059 | 0.0520 | 1.7346 | <0.05 | |
Ang | n.1 vs. n.2 | 1.4127 | 1.3144 | 0.1068 | 3.1201 | <0.05 |
n.1 vs. n.3 | 1.4127 | 1.3144 | 0.0983 | 2.8712 | <0.05 | |
n.2 vs. n.3 | 1.3059 | 0.6577 | 0.0085 | 0.2489 | <0.05 |
Operator | Obs | Mean | SD | [Conf. Interval 95%] | t | p Value | |
---|---|---|---|---|---|---|---|
1 | 5 | 14.24 | 3.91 | 9.38 | 19.1 | −3.9 | 0.0046 |
2 | 5 | 25.48 | 5.13 | 19.1 | 31.86 | ||
combined | 10 | 19.86 | 7.32 | 14.62 | 25.1 | ||
differents | −11.24 | −17.89 | −4.59 |
Operator | Coef | Standard Error | t | [Conf. Interval 95%] | p Value | |
---|---|---|---|---|---|---|
1 | −1.271402 | 0.29 | −4.42 | −2.19 | −0.36 | 0.021 |
2 | −1.30442 | 0.47 | −2.80 | −2.79 | 0.18 | 0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, G.; Lizio, G.; D’Errico, F.; Ferri, A.; Mazzoni, A.; Bianco, F.D.; Stefanelli, L.V.; Felice, P. Relevance of the Operator’s Experience in Conditioning the Static Computer-Assisted Implantology: A Comparative In Vitro Study with Three Different Evaluation Methods. Appl. Sci. 2022, 12, 9561. https://doi.org/10.3390/app12199561
Pellegrino G, Lizio G, D’Errico F, Ferri A, Mazzoni A, Bianco FD, Stefanelli LV, Felice P. Relevance of the Operator’s Experience in Conditioning the Static Computer-Assisted Implantology: A Comparative In Vitro Study with Three Different Evaluation Methods. Applied Sciences. 2022; 12(19):9561. https://doi.org/10.3390/app12199561
Chicago/Turabian StylePellegrino, Gerardo, Giuseppe Lizio, Filippo D’Errico, Agnese Ferri, Annalisa Mazzoni, Federico Del Bianco, Luigi Vito Stefanelli, and Pietro Felice. 2022. "Relevance of the Operator’s Experience in Conditioning the Static Computer-Assisted Implantology: A Comparative In Vitro Study with Three Different Evaluation Methods" Applied Sciences 12, no. 19: 9561. https://doi.org/10.3390/app12199561
APA StylePellegrino, G., Lizio, G., D’Errico, F., Ferri, A., Mazzoni, A., Bianco, F. D., Stefanelli, L. V., & Felice, P. (2022). Relevance of the Operator’s Experience in Conditioning the Static Computer-Assisted Implantology: A Comparative In Vitro Study with Three Different Evaluation Methods. Applied Sciences, 12(19), 9561. https://doi.org/10.3390/app12199561