Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Model Equations
2.2. Thermophysical Features of the Third-Grade Nanofluid
2.3. Nanoparticles and Base Fluid Features
2.4. Roseland Approximations
3. Numerical Solution
3.1. Description of the Embedded Control Physical Parameters
3.2. Convective Rate of HT: Nusselt Number
4. Irreversibility Analysis
5. Numerical Implementation: Galerkin Finite Element Method
- The residuals for problems (10)–(12) are weighted, and integrals are taken over the typical element in their written form;
- In order to obtain the weak systems, the linear second-order derivative expressions are integrated;
- Galerkin approximations are utilized to estimate the weak systems, and stiffness elements are produced according to those results;
- The nonlinear system is assembled using the forcing vectors and boundary vectors of the stiffness elements;
- The Picard linearization approach is used to linearize the nonlinear system, and the Gauss–Seidel procedure is used to solve the linearized problem repeatedly;
- Furthermore, convergence analysis is accomplished by ensuring that the obtained values are mesh-free.
6. Validity of Code
7. Results and Discussion
7.1. Effect of Deborah Numbers () and ()
7.2. Effect of Porous Media Parameter ()
7.3. The Influence of Volume Fraction Nanoparticle Parameter ()
7.4. The Influence of Velocity Slip Parameter (
7.5. Effect of Biot Number (), Variable Thermal Conductivity (), and Radiation Parameter ()
7.6. Effect of the Suction ()/Injection () Parameter
7.7. Impact of Reynolds Number () and Brinkman Number () on Entropy Generation
7.8. Relative HT Rate in SWCNT-CMC and MWCNT-CMC Nanofluids
8. Final Outcomes
- ✓
- The velocity profile can be increased by adjusting the Deborah number (, ) and injection parameters, although porous media, volume fraction nanoparticles, velocity slide, and force parameters reduce the speed of the movement.
- ✓
- The Deborah number (), porous media, volume fraction nanoparticle, velocity slip, Biot number, radiation, thermal conductivity, and injection parameter increase the temperature profile, whereas Deborah number () and the suction parameter reduce the temperature profile of both nanofluids.
- ✓
- Porous media, volume fraction nanoparticles, Biot number, radiation, suction, Reynolds number, and Brinkmann support entropy in the system. However, only velocity slip and injection parameters can reduce flow entropy.
- ✓
- The local Nusselt number is determined as a result of the volume fraction nanoparticle, Biot number, and radiation parameter, although it is reduced by the velocity slip parameter.
- ✓
- The SWCNT-CMC is a better heat conducting, whereas the MWCNT-CMC is a better heat absorber.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Introduction to Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Serrano, J.; Olmeda, P.; Arnau, F.; Reyes-Belmonte, M.; Lefebvre, A. Importance of heat transfer phenomena in small turbochargers for passenger car applications. SAE Int. J. Engines 2013, 6, 716–728. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, J. Research, development and industrial application of heat pipe technology in China. Appl. Therm. Eng. 2003, 23, 1067–1083. [Google Scholar] [CrossRef]
- Ramesh, K.N.; Sharma, T.K.; Rao, G.A.P. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: A review. Arch. Comput. Methods Eng. 2021, 28, 3135–3165. [Google Scholar] [CrossRef]
- Pozhar, L.A. Structure and dynamics of nanofluids: Theory and simulations to calculate viscosity. Phys. Rev. E 2000, 61, 1432. [Google Scholar] [CrossRef]
- Rafati, M.; Hamidi, A.A.; Niaser, M.S. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl. Therm. Eng. 2012, 45, 9–14. [Google Scholar] [CrossRef]
- Polidori, G.; Fohanno, S.; Nguyen, C.T. A note on heat transfer modelling of Newtonian nanofluids in laminar free convection. Int. J. Therm. Sci. 2007, 46, 739–744. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. Application of nanofluids in heat exchangers: A review. Renew. Sustain. Energy Rev. 2012, 16, 5625–5638. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Rivlin, R.S.; Ericksen, J.L. Stress-Deformation Relations for Isotropic Materials; Springer: New York, NY, USA, 1997. [Google Scholar]
- Hayat, T.; Naz, N.; Asghar, S.; Mesloub, S. Soret-Dufour effects on three-dimensional flow of third grade fluid. Nucl. Eng. Des. 2012, 243, 1–14. [Google Scholar] [CrossRef]
- Mustafa, T. Flow and heat simultaneously induced by two stretchable rotating disks. Phys. Fluids 2016, 28, 043601. [Google Scholar]
- Shehzad, S.A.; Hussain, T.; Hayat, T.; Ramzan, M.; Alsaedi, A. Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation. J. Cent. South Univ. 2015, 22, 360–367. [Google Scholar] [CrossRef]
- Sajid, M.; Mahmood, R.; Hayat, T. Finite element solution for flow of a third grade fluid past a horizontal porous plate with partial slip. Comput. Math. Appl. 2008, 56, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, M.M.; Shahmohamadi, H.; Dinarvand, S. Analytic approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates. Math. Probl. Eng. 2008, 2008, 1–13. [Google Scholar] [CrossRef]
- Shehzad, S.A.; Abbasi, F.M.; Hayat, T.; Ahmad, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Appl. Math. Mech. 2016, 37, 761–768. [Google Scholar] [CrossRef]
- Hussnain, M.; Mehmood, A.; Ali, A. Three-dimensional channel flow of second grade fluid in rotating frame. Appl. Math. Mech. 2012, 3, 289–302. [Google Scholar] [CrossRef]
- Baris, S. Steady three-dimensional flow of a second grade fluid towards a stagnation point at a moving flat plate. Turk. J. Eng. Environ. Sci. 2003, 27, 21–29. [Google Scholar]
- Shoaib, M.; Siddiqui, A.M.; Rana, M.A.; Imran, A. Three-dimensional flow of a second grade fluid along an infinite horizontal plane wall with periodic suction. Am. Acad. Sci. Res. J. Eng. Technol. Sci. 2016, 18, 153–170. [Google Scholar]
- Ramzan, M.; Bilal, M.; Farooq, U.; Chung, J.D. Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: An optimal solution. Results Phys. 2016, 6, 796–804. [Google Scholar] [CrossRef]
- Mustafa, M.; Nawaz, M.; Hayat, T.; Alsaedi, A. MHD boundary layer flow of second grade nanofluid over a stretching sheet with convective boundary conditions. J. Aerosp. Eng. 2014, 27, 1943–5525. [Google Scholar] [CrossRef]
- Alzahrani, E.O.; Shah, Z.; Dawar, A.; Malebary, S.J. Hydromagnetic mixed convective third grade nanomaterial containing gyrotactic microorganisms toward a horizontal stretched surface. Alex. Eng. J. 2019, 58, 1421–1429. [Google Scholar] [CrossRef]
- Fosdick, R.L.; Rajagopal, K.R. Thermodynamics and stability of fluids of third grade. Proc. R. Soc. Lond. A 1980, 339, 351–377. [Google Scholar]
- Yurusoy, M.; Pakdemirli, M. Approximate analytical solutions for the flow of a third grade fluid in a pipe. Int. J. Non Linear Mech. 2002, 37, 187–195. [Google Scholar] [CrossRef]
- Ellahi, R.; Riaz, A. Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math. Comp. Model. 2010, 52, 1783–1793. [Google Scholar] [CrossRef]
- Adesanya, S.O.; Makind, O.D. Thermodynamic analysis for a third grade fluid through a vertical channel with internal heat generation. J. Hydrodyn. 2015, 27, 264–272. [Google Scholar] [CrossRef]
- Hayat, T.; Nazar, H.; Imtiaz, M.; Alsaedi, A.; Ayub, M. Axisymmetric squeezing flow of third grade fluid in presence of convective conditions. Chin. J. Phys. 2017, 55, 738–754. [Google Scholar] [CrossRef]
- Akinshilo, A.T.; Sobamowo, G.M. Perturbation solutions for the study of MHD blood as a third grade nanofluid transporting gold nanoparticles through a porous channel. J. Appl. Comp. Mech. 2017, 3, 103–113. [Google Scholar]
- Reddy, G.J.; Hiremath, A.; Kumar, M. Computational modeling of unsteady third grade fluid flow over a vertical cylinder: A study of heat transfer visualization. Res. Phys. 2018, 8, 671–682. [Google Scholar] [CrossRef]
- Gaffar, S.A.; Prasad, V.R.; Bég, O.A.; Khan, M.H.H.; Venkatadri, K. Radiative magnetohydrodynamics flow of third-grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 127. [Google Scholar] [CrossRef]
- Sajid, M.; Mughees, M.; Ali, N. A theoretical analysis of blade coating for third-grade fluid. J. Plast. Film. Sheeting 2019, 35, 218–338. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Joseph, T.V. Dynamics of magneto-nano third-grade fluid with Brownian motion and thermophoresis effects in the pressure type die. J. Nanofluids 2019, 8, 870–875. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, M.I.; Hayat, T.; Farooq, S.; Alsaedi, A. Interaction of thermal radiation in hydromagnetic viscoelastic nanomaterial subject to gyrotactic microorganisms. Appl. Nanosci. 2019, 9, 1193–1204. [Google Scholar] [CrossRef]
- Shah, Z.; Babazadeh, P.; Kumam, A.; Shafee, P. Thounthong, Magnetohydrodynamic nanofluids under the influence of shape factor and thermal transport in a porous media using CVFEM. Front. Phys. 2019, 7, 164. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Dawar, A.; Alzahrani, E.O.; Thounthong, P. Study of the couple stress convective micropolar fluid flow in a hall MHD generator system. Front. Phys. 2019, 7, 171. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Medebber, M.A.; Elkotb, M.A.; Abderahmane, A.; Aimad, K.; Al-Farhany, K.; Jamshed, W.; Moria, H.; Aldawi, F.; Saleel, C.A.; et al. Galerkin finite element analysis of Darcy-Brinkman-Forchheimer natural convective flow in conical annular enclosure with discrete heat sources. Energy Rep. 2021, 7, 6172–6181. [Google Scholar] [CrossRef]
- Hatami, M.; Ghasemi, S.E. Thermophoresis and Brownian diffusion of nanoparticles around a vertical cone in a porous media by Galerkin finite element method (GFEM). Case Stud. Therm. Eng. 2021, 28, 101627. [Google Scholar]
- Al-Kouz, W.; Bendrer, B.A.; Aissa, A.; Almuhtady, A.; Jamshed, W.; Nisar, K.S.; Mourad, A.; Alshehri, N.A.; Zakarya, M. Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder. Sci. Rep. 2021, 11, 16494. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.M.; Imran, N.; Mehmood, Z.; Sohail, M. A Petrov-Galerkin finite element approach for the unsteady boundary layer upper-convected rotating Maxwell fluid flow and heat transfer analysis. Waves Random Complex Media 2022, 1–18. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Wang, X.; Khan, W.A.; Hobiny, A.; Iqbal, K. Finite element analysis of nanofluid flow and heat transfer in a square cavity with two circular obstacles at different positions in the presence of magnetic field. J. Energy Storage 2022, 51, 104462. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Hussain, S.; Sadiq, M.A. Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamics forces. Case Stud. Therm. Eng. 2021, 27, 101321. [Google Scholar] [CrossRef]
- Asmadi, M.S.; Kasmani, R.M.; Siri, Z.; Saleh, H. Galerkin finite element analysis of buoyancy-driven heat transfer of water-based Cu-Al2O3 hybrid nanofluid inside a u-shaped enclosure with localized heat. J. Enhanc. Heat Transf. 2022, 29, 1–26. [Google Scholar] [CrossRef]
- Ibrahim, W.; Gadisa, G. Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption. Propuls. Power Res. 2020, 9, 304–315. [Google Scholar] [CrossRef]
- Mourad, A.; Aissa, A.; Mebarek-Oudina, F.; Jamshed, W.; Ahmed, W.; Ali, H.M.; Rashad, A.M. Galerkin finite element analysis of thermal aspects of Fe3O4-MWCNT/water hybrid nanofluid filled in wavy enclosure with uniform magnetic field effect. Int. Commun. Heat Mass Transf. 2021, 126, 105461. [Google Scholar] [CrossRef]
- Abbas, I.A. Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity. J. Comput. Theor. Nanosci. 2014, 11, 987–992. [Google Scholar] [CrossRef]
- Abbas, I.A. Generalized magneto-thermoelasticity in a nonhomogeneous isotropic hollow cylinder using the finite element method. Arch. Appl. Mech. 2009, 79, 41–50. [Google Scholar] [CrossRef]
- Espinoza, C.; Ramos-Moore, E.; Celentano, D. Effect of microstructure on thermoelastic stresses in Al2O3/Ti (C, N, O)/Ti (C, N) coating systems studied by Finite Element Method simulations. Mater. Lett. 2021, 295, 129777. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Sharma, R.; Hussain, S.M.; Chamkha, A.J.; Mamatha, E. A numerical and statistical approach to capture the flow characteristics of Maxwell hybrid nanofluid containing copper and graphene nanoparticles. Chin. J. Phys. 2022, 77, 1278–1290. [Google Scholar]
- Hussain, S.M. Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions. Sci. Rep. 2022, 12, 1751. [Google Scholar] [CrossRef]
- Aiboud, S.; Saouli, S. Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching surface. Int. J. Nonlinear Mech. 2010, 45, 482–489. [Google Scholar] [CrossRef]
- Makinde, O.D. Second law analysis for variable viscosity hydromagnetic boundary layer flow with thermal radiation and Newtonian heating. Entropy 2011, 13, 1446–1464. [Google Scholar] [CrossRef]
- Loganathan, K.; Mohana, K.; Mohanraj, M.; Sakthivel, P.; Rajan, S. Impact of third grade nanofluid flow across a convective surface in the presence of inclined Lorentz force: An approach to entropy optimization. J. Therm. Anal. Calorim. 2021, 144, 1935–1947. [Google Scholar] [CrossRef]
- Loganathan, K.; Rajan, S. An entropy approach of Williamson nanofluid flow with Joule heating and zero nanoparticle mass flux. J. Therm. Anal. Calorim. 2020, 141, 2599–2612. [Google Scholar] [CrossRef]
- Rossi, T.F.; McNeil, S.; Hendrickson, C. Entropy model for consistent impact-fee assessment. J. Urban Plan. Dev. 1989, 115, 51–63. [Google Scholar] [CrossRef]
- Herniter, J.D. An entropy model of brand purchase behavior. J. Mark. Res. 1973, 10, 361–375. [Google Scholar] [CrossRef]
- Torres-Mendieta, R.; Mondragón, R.; Puerto-Belda, V.; Mendoza-Yero, O.; Lancis, J.; Juliá, J.E.; Mínguez-Vega, G. Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation. Chem. Phys. Chem. 2017, 18, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.J.; Khan, S.A.; Hayat, T.; Alsaedi, A. Entropy Optimization in Magnetohydrodynamic Flow of Third-Grade Nanofluid with Viscous Dissipation and Chemical Reaction. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2679–2689. [Google Scholar] [CrossRef]
- Qureshi, M.A. Thermal Capability and Entropy Optimization for Prandtl-Eyring Hybrid Nanofluid Flow in Solar Aircraft Implementation. Alex. Eng. J. 2022, 61, 5295–5307. [Google Scholar] [CrossRef]
- Rehman, A.U.; Mehmood, R.; Nadeem, S.; Akbar, N.S.; Motsa, S.S. Effects of single and multi-walled carbon nano tubes on water and engine oil based rotating fluids with internal heating. Adv. Powder Technol. 2017, 28, 1991–2002. [Google Scholar] [CrossRef]
- Rehman, S.; Shah, R.A.; Idrees, M.; Khan, A. Mixed convection MHD fows of Ag, Cu, TiO2 and Al2O3 nanofuids over in unsteady stretching sheet in the presence of heat generation along with radiation⧵absorption effects. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
- Brewster, M.Q. Thermal Radiative Transfer and Features; John Wiley and Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Bouslimi, J.; Alkathiri, A.A.; Alharbi, A.N.; Jamshed, W.; Eid, M.R.; Bouazizi, M.L. Dynamics of convective slippery constraints on hybrid radiative Sutterby nanofluid flow by Galerkin finite element simulation. Nanotechnol. Rev. 2022, 11, 1219–1236. [Google Scholar] [CrossRef]
- Hussain, S.M.; Jamshed, W.; Safdar, R.; Shahzad, F.; Nasir, N.A.A.M.; Ullah, I. Chemical reaction and thermal characteristics of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno’s model. Energy Environ. 2021, 1–24. [Google Scholar] [CrossRef]
- Jamshed, W.; Eid, M.R.; Nisar, K.S.; Nasir, N.A.A.M.; Edacherian, A.; Saleel, C.A.; Vijayakumar, V. A numerical frame work of magnetically driven Powell-Eyring nanofluid using single phase model. Sci. Rep. 2021, 11, 16500. [Google Scholar] [CrossRef]
- Qureshi, M.A. A Case Study of MHD Driven Prandtl-Eyring Hybrid Nanofluid Flow Over a Stretching Sheet with Thermal Jump Conditions. Case Stud. Therm. Eng. 2021, 28, 101581. [Google Scholar] [CrossRef]
- Jamshed, W.; Aziz, A. Entropy Analysis of TiO2-Cu/EG Casson Hybrid Nanofluid via Cattaneo-Christov Heat Flux Model. Appl. Nanosci. 2018, 8, 1–14. [Google Scholar]
- Jamshed, W.; Nisar, K.S. Computational single phase comparative study of Williamson nanofluid in parabolic trough solar collector via Keller box method. Int. J. Energy Res. 2021, 45, 10696–10718. [Google Scholar] [CrossRef]
- Jamshed, W.; Devi, S.U.; Nisar, K.S. Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys. Scr. 2021, 96, 065202. [Google Scholar] [CrossRef]
- Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Shahzad, F.; Eid, M.R. Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: A solar thermal application. J. Mater. Res. Technol. 2021, 14, 985–1006. [Google Scholar] [CrossRef]
- Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Mukhtar, T.; Vijayakumar, V.; Ahmad, F. Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study. Case Stud. Therm. Eng. 2021, 26, 101179. [Google Scholar] [CrossRef]
- Jamshed, W.; Mishra, S.R.; Pattnaik, P.K.; Nisar, K.S.; Devi, S.S.U.; Prakash, M.; Shahzad, F.; Hussain, M.; Vijayakumar, V. Features of entropy optimization on viscous second grade nanofluid streamed with thermal radiation: A Tiwari and Das model. Case Stud. Therm. Eng. 2021, 27, 101291. [Google Scholar] [CrossRef]
- Jamshed, W.; Nasir, N.A.A.M.; Isa, S.S.P.M.; Safdar, R.; Shahzad, F.; Nisar, K.S.; Eid, M.R.; Abdel-Aty, A.H.; Yahia, I.S. Thermal growth in solar water pump using Prandtl–Eyring hybrid nanofluid: A solar energy application. Sci. Rep. 2021, 11, 18704. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, W.; Shahzad, F.; Safdar, R.; Sajid, T.; Eid, M.R.; Nisar, K.S. Implementing renewable solar energy in presence of Maxwell nanofluid in parabolic trough solar collector: A computational study. Waves Random Complex Media 2021. [Google Scholar] [CrossRef]
- Jamshed, W. Finite element method in thermal characterization and streamline flow analysis of electromagnetic silver-magnesium oxide nanofluid inside grooved enclosure. Int. Commun. Heat Mass Transf. 2021, 130, 105795. [Google Scholar] [CrossRef]
- Jamshed, W.; Sirin, C.; Selimefendigil, F.; Shamshuddin, M.D.; Altowairqi, Y.; Eid, M.R. Thermal Characterization of Coolant Maxwell Type Nanofluid Flowing in Parabolic Trough Solar Collector (PTSC) Used Inside Solar Powered Ship Application. Coatings 2021, 11, 1552. [Google Scholar] [CrossRef]
- Hussain, S.M. Irreversibility Analysis of Time Dependent Magnetically Driven Flow of Sutterby Hybrid Nanofluid: A Thermal Mathematical Model. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Hussain, S.M.; Goud, B.S.; Madheshwaran, P.; Jamshed, W.; Pasha, A.A.; Safdar, R.; Arshad, M.; Ibrahim, R.W.; Ahmad, M.K. Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study. ACS Omega 2022, 7, 25309–25320. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Jamshed, W.; Pasha, A.A.; Safdar, R.; Alam, M.M.; Arshad, M.; Hussain, S.M.; Krawczuk, M. Thermal cooling process by nanofluid flowing near Stagnating point of expanding surface under induced magnetism Force: A computational case study, Case Stud. Therm. Eng. 2022, 36, 102190. [Google Scholar] [CrossRef]
- Hussain, S.M.; Jamshed, W.; Pasha, A.A.; Adil, M.; Akram, M. Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface. Int. Commun. Heat Mass Transf. 2022, 137, 106243. [Google Scholar] [CrossRef]
- Shahzad, F.; Jamshed, W.; Safdar, R.; Hussain, S.M.; Nasir, N.A.A.M.; Dhange, M.; Nisar, K.S.; Eid, M.R.; Sohail, M.; Alsehli, M.; et al. Thermal Analysis Characterization of Solar Powered Ship Using Oldroyd Hybrid Nanofluids in Parabolic Trough Solar Collector: An Optimal Thermal Application. Nanotechnol. Rev. 2022, 11, 2015–2037. [Google Scholar] [CrossRef]
- Jamshed, W.; Eid, M.R.; Safdar, R.; Pasha, A.A.; Isa, S.S.P.M.; Adil, M.; Rehman, Z.; Weera, W. Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: A solar thermal application. Sci. Rep. 2022, 12, 11484. [Google Scholar] [CrossRef]
- Akgül, E.K.; Akgül, A.; Jamshed, W.; Rehman, Z.; Nisar, K.S.; Alqahtani, M.S.; Abbas, M. Analysis of respiratory mechanics models with different kernels. Open Phys. 2022, 20, 609–615. [Google Scholar] [CrossRef]
- Jamshed, W.; Safdar, R.; Rehman, Z.; Lashin, M.M.A.; Ehab, M.; Moussa, M.; Rehman, A. Computational technique of thermal comparative examination of Cu and Au nanoparticles suspended in sodium alginate as Sutterby nanofluid via extending PTSC surface. J. Appl. Biomater. Funct. Mater. 2022, 1–20. [Google Scholar] [CrossRef]
- Dhange, M.; Sankad, G.; Safdar, R.; Jamshed, W.; Eid, M.R.; Bhujakkanavar, U.; Gouadria, S.; Chouikh, R. A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field. PLoS ONE 2022, 17, e0266727. [Google Scholar] [CrossRef]
- Akram, M.; Jamshed, W.; Goud, B.S.; Pasha, A.A.; Sajid, T.; Rahman, M.M.; Arshad, M.; Weera, W. Irregular heat source impact on Carreau nanofluid flowing via exponential expanding cylinder: A thermal case study. Case Stud. Therm. Eng. 2022, 36, 102190. [Google Scholar] [CrossRef]
- Shahzad, F.; Jamshed, W.; Ahmad, A.; Safdar, R.; Alam, M.M.; Ullah, I. Efficiency evaluation of solar water-pump using nanofluids in parabolic trough solar collector: 2nd order convergent approach. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Hussain, S.M. Dynamics of radiative Williamson hybrid nanofluid with entropy generation: Significance in solar aircraft. Sci. Rep. 2022, 12, 8916. [Google Scholar] [CrossRef] [PubMed]
Property | Nanofluid |
---|---|
Dynamic viscosity | |
Density | |
Heat capacity | |
Thermal conductivity |
Thermophysical Properties | |||
---|---|---|---|
SWCNT | 2600 | 425 | 6600 |
MWCNT | 1600 | 796 | 3000 |
CMC | 997.10 | 4179 | 0.6130 |
No. of Elements | ||
---|---|---|
30 | 0.0326964105 | 0.00543392174 |
60 | 0.3008137336 | 0.00482355489 |
90 | 0.2787224963 | 0.00452597831 |
120 | 0.2518385629 | 0.00423211689 |
150 | 0.2327463208 | 0.00396988127 |
180 | 0.2164459730 | 0.00357315905 |
210 | 0.1902813462 | 0.00327698245 |
240 | 0.1907921025 | 0.00305766541 |
270 | 0.1906827572 | 0.00274452730 |
300 | 0.1905266081 | 0.00253240956 |
Ref. [64] | Ref. [65] | Present | |
---|---|---|---|
0.72 | 0.80876181 | 0.80876181 | 0.80876184 |
1.0 | 1.0 | 1.0 | 1.0 |
3.0 | 1.92357420 | 1.92357420 | 1.92357418 |
7.0 | 3.07314651 | 3.07314651 | 3.07314650 |
10.0 | 3.72055429 | 3.72055429 | 3.72055422 |
MWCNT-CMC | SWCNT-CMC | ||||||
---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.8 | 0.0907 | 0.1209 |
0.2 | 0.1735 | 0.2302 | |||||
0.3 | 0.2492 | 0.3291 | |||||
0.1 | 0.0860 | 0.1021 | |||||
0.2 | 0.0907 | 0.1209 | |||||
0.3 | 0.0955 | 0.1408 | |||||
0.1 | 0.0907 | 0.1209 | |||||
0.2 | 0.0952 | 0.1387 | |||||
0.3 | 0.0981 | 0.1454 | |||||
0.01 | 0.0652 | 0.0979 | |||||
0.05 | 0.0780 | 0.1009 | |||||
0.1 | 0.0907 | 0.1209 | |||||
0.1 | 0.0907 | 0.1209 | |||||
0.2 | 0.0920 | 0.1513 | |||||
0.3 | 0.0982 | 0.1625 | |||||
0.8 | 0.0907 | 0.1209 | |||||
7.8 | 0.0959 | 0.1598 | |||||
6450 | 0.0972 | 0.1853 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, F.; Jamshed, W.; Tag El Din, E.S.M.; Safdar, R.; Mohd Nasir, N.A.A.; Ibrahim, R.W.; Hussain, S.M.; Ullah, I.; Hafeez, M.B.; Krawczuk, M. Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study. Appl. Sci. 2022, 12, 9647. https://doi.org/10.3390/app12199647
Shahzad F, Jamshed W, Tag El Din ESM, Safdar R, Mohd Nasir NAA, Ibrahim RW, Hussain SM, Ullah I, Hafeez MB, Krawczuk M. Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study. Applied Sciences. 2022; 12(19):9647. https://doi.org/10.3390/app12199647
Chicago/Turabian StyleShahzad, Faisal, Wasim Jamshed, El Sayed M. Tag El Din, Rabia Safdar, Nor Ain Azeany Mohd Nasir, Rabha W. Ibrahim, Syed M. Hussain, Ikram Ullah, Muhammad Bilal Hafeez, and Marek Krawczuk. 2022. "Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study" Applied Sciences 12, no. 19: 9647. https://doi.org/10.3390/app12199647
APA StyleShahzad, F., Jamshed, W., Tag El Din, E. S. M., Safdar, R., Mohd Nasir, N. A. A., Ibrahim, R. W., Hussain, S. M., Ullah, I., Hafeez, M. B., & Krawczuk, M. (2022). Galerkin Finite Element Process for Entropy Production and Thermal Evaluation of Third-Grade Fluid Flow: A Thermal Case Study. Applied Sciences, 12(19), 9647. https://doi.org/10.3390/app12199647