Lightweight Transformer Network for Ship HRRP Target Recognition
Abstract
:1. Introduction
2. Proposed Model
2.1. Lightweight Transformer Model
2.2. Data Pre-Processing
2.3. Local RNN Module
2.4. Group Linear Transformations (GLTs)
2.5. Adaptive Gradient Clipping
3. Experimental Results and Analysis
3.1. Introduction to the Dataset
3.2. Recognition Performance
3.3. Feature Visualization
3.4. Effect of Training Set Size
3.5. Model Complexity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, L.; Liu, H.; Wang, P. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size. IEEE Trans. Signal Process. 2012, 60, 3546–3559. [Google Scholar]
- Shi, L.; Wang, P.; Liu, H. Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying-Yang harmony learning. IEEE Trans. Signal Process. 2010, 59, 610–617. [Google Scholar] [CrossRef]
- Du, L.; Wang, P.; Liu, H. Bayesian spatiotemporal multitask learning for radar HRRP target recognition. IEEE Trans. Signal Process. 2011, 59, 3182–3196. [Google Scholar] [CrossRef]
- Liu, H.; Feng, B.; Chen, B. Radar high-resolution range profiles target recognition based on stable dictionary learning. IET Radar Sonar Navig. 2016, 10, 228–237. [Google Scholar] [CrossRef]
- Feng, B.; Chen, B.; Liu, H. Radar HRRP target recognition with deep networks. Pattern Recognit. 2017, 61, 379–393. [Google Scholar] [CrossRef]
- Liao, K.; Si, J.; Zhu, F. Radar HRRP target recognition based on concatenated deep neural networks. IEEE Access 2018, 6, 29211–29218. [Google Scholar] [CrossRef]
- Guo, C.; Jian, T.; Xu, C.A. Radar HRRP target recognition based on deep multi-Scale 1D convolutional neural network. J. Electron. Inf. Technol. 2019, 41, 1302–1309. [Google Scholar]
- Du, L.; Liu, H.; Bao, Z. Radar HRRP target recognition based on higher order spectra. IEEE Trans. Signal Process. 2005, 53, 2359–2368. [Google Scholar]
- Zhang, X.D.; Shi, Y.; Bao, Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Process. 2001, 49, 1875–1885. [Google Scholar] [CrossRef]
- Molchanov, P.; Egiazarian, K.; Astola, J. Classification of aircraft using micro-Doppler bicoherence-based features. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1455–1467. [Google Scholar] [CrossRef]
- Wan, J.; Chen, B.; Xu, B.; Liu, H.; Jin, L. Convolutional neural networks for radar HRRP target recognition and rejection. EURASIP J. Adv. Signal Process. 2019, 2019, 5. [Google Scholar] [CrossRef]
- Guo, C.; Wang, H.; Jian, T.; Het, Y.; Zhalng, X. Radar target recognition based on feature Pyramid fusion lightweight CNN. IEEE Access 2019, 7, 51140–51149. [Google Scholar] [CrossRef]
- Chen, J.; Du, L.; Guo, G.; Yin, L.; Weti, D. Target-attentional CNN for Radar Automatic Target Recognition with HRRP. Signal Process. 2022, 196, 108497. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Chen, W. Radar HRRP target recognition with target aware two-dimensional recurrent neural network. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–23 September 2019; pp. 1–5. [Google Scholar]
- Zhang, Y.; Xiao, F.; Qian, F. VGM-RNN: HRRP sequence extrapolation and recognition based on a novel optimized RNN. IEEE Access 2020, 8, 70071–70081. [Google Scholar] [CrossRef]
- Xu, B.; Chen, B.; Wan, J. Target-aware recurrent attentional network for radar HRRP target recognition. Signal Process. 2019, 155, 268–280. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Jie, X. Radar high-resolution range profile target recognition based on attention mechanism and bidirectional gated recurrent. J. Radars 2019, 8, 589–597. [Google Scholar]
- Zhang, Y.F.; Zhang, S.H.; Liu, Y.X. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network. Syst. Eng. Electron. 2021, 43, 2775–2781. [Google Scholar]
- Du, C.; Tian, L.; Chen, B. Region-factorized recurrent attentional network with deep clustering for radar HRRP target recognition. Signal Process. 2021, 183, 108010. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 8, 5598–6008. [Google Scholar]
- Hsu, W.N.; Bolte, B.; Tsai, Y.H. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 3451–3460. [Google Scholar] [CrossRef]
- Li, X.; Cooper, S.A.; Tang, Y. Deep transformers with latent depth. Adv. Neural Inf. Process. Syst. 2020, 33, 1736–1746. [Google Scholar]
- Wang, Z.; Ma, Y.; Liu, Z. R-transformer: Recurrent neural network enhanced transformer. arXiv 2019, arXiv:1907.05572. [Google Scholar]
- Mehta, S.; Ghazvininejad, M.; Iyer, S. Delight: Deep and light-weight transformer. arXiv 2020, arXiv:2008.00623. [Google Scholar]
- Seetharaman, P.; Wichern, G.; Pardo, B. Autoclip: Adaptive gradient clipping for source separation networks. In Proceedings of the IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), Espoo, Finland, 21–24 September 2020; pp. 1–25. [Google Scholar]
- Chen, W.; Chen, B.; Liu, Y.; Petng, X.; Fan, H.; Yu, F.; Liu, H. Bidirectional recurrent gamma belief network for HRRP target recognition. Signal Process. 2021, 188, 108213. [Google Scholar] [CrossRef]
- Xu, B.; Chen, B.; Liu, H. Attention-based recurrent neural network model for radar high-resolution range profile target recognition. J. Electron. Inf. Technol. 2016, 38, 2988–2995. [Google Scholar]
Ship Number | Length (m) | Width (m) |
---|---|---|
1 | 182.8 | 24.1 |
2 | 153.8 | 20.4 |
3 | 162.9 | 21.4 |
4 | 99.6 | 15.2 |
5 | 332.8 | 76.4 |
6 | 337.2 | 77.2 |
7 | 17.1 | 3.6 |
8 | 143.4 | 15.2 |
9 | 17.6 | 4.5 |
10 | 16.3 | 4.7 |
Models | Accuracy (%) |
---|---|
SVM | 46.52 |
PCA + SVM | 49.21 |
RNN | 77.69 |
LSTM | 64.26 |
Transformer | 93.25 |
Transformer + LR | 94.86 |
Transformer + LR + GLTs | 97.13 |
Transformer + LR + GLTs + AC | 97.86 |
The Proportion of Training Set | 20% | 40% | 50% | 60% | 80% | 90% |
---|---|---|---|---|---|---|
RNN | 50.05 | 64.94 | 68.17 | 70.25 | 75.57 | 77.69 |
LSTM | 31.29 | 43.79 | 49.32 | 54.29 | 61.34 | 64.26 |
Transformer | 65.72 | 78.71 | 83.12 | 85.33 | 91.71 | 93.25 |
Transformer + LR | 69.03 | 82.43 | 85.86 | 88.40 | 92.69 | 94.86 |
Transformer + LR + GLTs | 81.83 | 87.46 | 90.10 | 92.60 | 95.67 | 97.13 |
Transformer + LR + GLTs + AC | 82.53 | 87.97 | 90.88 | 93.23 | 96.13 | 97.86 |
Model | Params (K) | Flops (G) | Accuracy (%) |
---|---|---|---|
RNN | 255.27 | <0.01 | 77.69 |
LSTM | 954.23 | <0.01 | 64.26 |
Transformer | 1130.21 | 0.01 | 93.25 |
Transformer + LR | 1531.67 | 0.03 | 94.86 |
Transformer + LR + GLTs | 292.94 | <0.01 | 97.13 |
Transformer + LR + GLTs + AC | 292.94 | <0.01 | 97.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Z.; Lu, J.; Wan, L. Lightweight Transformer Network for Ship HRRP Target Recognition. Appl. Sci. 2022, 12, 9728. https://doi.org/10.3390/app12199728
Yue Z, Lu J, Wan L. Lightweight Transformer Network for Ship HRRP Target Recognition. Applied Sciences. 2022; 12(19):9728. https://doi.org/10.3390/app12199728
Chicago/Turabian StyleYue, Zhibin, Jianbin Lu, and Lu Wan. 2022. "Lightweight Transformer Network for Ship HRRP Target Recognition" Applied Sciences 12, no. 19: 9728. https://doi.org/10.3390/app12199728
APA StyleYue, Z., Lu, J., & Wan, L. (2022). Lightweight Transformer Network for Ship HRRP Target Recognition. Applied Sciences, 12(19), 9728. https://doi.org/10.3390/app12199728