Retention of Antioxidants from Dried Carrot Pomace in Wheat Bread
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
- Chemical evaluation
- Total content of polyphenols was determined with Folin–Ciocalteau reagent, using a spectrophotometer, according to Singleton et al. [25]. 5 mL of the extract was diluted to a volume of 50 mL with distilled water. 5 mL of the diluted extract was combined with 0.25 mL of Folin–Ciocalteau reagent (previously diluted with distilled water in the proportion 1:1 v/v), 0.5 mL 7% Na2CO3. The contents were vortexed (WF2, Janke & Kunkel, Staufen, Germany) and stored for 30 min in a dark place. The absorbance was measured using Helios Gamma 100–240 (Thermo Fisher Scientific, Runcorn, UK), at the wavelength λ = 760 nm. The results were converted to mg catechin/100 g d.m.
- Determination of flavonoids was performed by the spectrophotometric method, according to El Hariri et al. [26], 0.5 mL of the extract was combined with 1.8 mL distilled water and 0.2 mL 2-aminoethyldiphenylborate reagent in a test tube. The contents were vortexed, and the absorbance was measured at the wavelength λ = 404 nm. Flavonoid content was expressed as mg of rutin/100 g d.m.
- Contents of total polyphenols (TPC-NFC, without F-C reagent), phenolic acids, flavonols and anthocyanins were determined by spectrophotometric method, according to Mazza et al. [27], with the modification of Oomah et al. [28]. 0.1 mL of the extract was mixed with 2.4 mL of 2% HCl in 75% in a test tube. The contents were vortexed and the absorbance was measured in at the wavelength λ = 280 nm (TPC), λ = 320 nm (phenolic acids), λ = 360 nm (flavonols) and λ = 520 nm (anthocyanins). TPC was expressed in mg of catechin/100 g d.m., phenolic acids in mg of ferulic acid/100 g d.m., flavonols in mg quercetin/100 g d.m., and anthocyanins in mg glycoside-3-cyanidin/ 100 g d.m.
- Free-radical scavenging activity
- Antiradical activity
- Ferric reducing antioxidant power (FRAP)
- Molybdenum reducing antioxidant power (FOMO)
- Total carotenoid content
- Statistical analysis
3. Results and Discussion
3.1. Dough Properties
3.2. Bread Properties
3.3. The Influence of Carrot Pomace on Bread Properties
3.3.1. Chemical Composition of Bread
3.3.2. Antioxidants in Bread
3.3.3. Antiradical Properties of Bread
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabir, F.; Tow, W.W.; Hamauzu, Y.; Katayama, S.; Tanaka, S.; Nakamura, S. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chem. 2015, 167, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [PubMed]
- Silva, F.A.M.; Borges, F.; Guimarães, C.; Lima, J.L.F.C.; Matos, C.; Reis, S. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food Chem. 2000, 48, 2122–2126. [Google Scholar] [CrossRef] [PubMed]
- Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Montilla, E.C.; Arzaba, M.R.; Hillebrand, S.; Winterhalter, P. Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, beta sweet, deep purple, and purple haze. J. Agric. Food Chem. 2011, 59, 3385–3390. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22. [Google Scholar] [CrossRef]
- Devi, J.; Bhatia, S.; Alam, M.S. Abiotic elicitors influence antioxidative enzyme activities and shelf life of carrot during storage under refrigerated conditions. J. Plant. Growth Regul. 2019, 38, 1529–1544. [Google Scholar] [CrossRef]
- Roszkowska, B.; Piłat, B.; Tańska, M. Comparison of chemical composition of carrot roots of orange, purple and white colour. Nauk. Przyr. Technol. 2015, 9, 59. [Google Scholar] [CrossRef]
- Cieślik, E.; Gręda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- El-Bastawesy, A.; Sheashea, E.; Hamed, H. Studies on aroma compounds of apricot-carrot nectar. Egypt J. Agric. Res. 2003, 81, 1761–1781. [Google Scholar]
- Sharma, H.; Kumar, N. Utilization of carrot pomace. In Food Processing By-Products and Their Utilization; Anal, A.K., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 207–229. [Google Scholar]
- Bohm, V.; Otto, K.; Weissleder, F. Yield of Juice and Carotenoids of the Carrot Juice Production; Symposium Jena-Thuringen: Jena, Germany, 1999; pp. 115–119. [Google Scholar]
- Šeregelj, V.; Vulić, J.; Ćetković, G.; Čanadanovć-Brunet, J.; Šaponjac, V.T.; Stajčić, S. Natural bioactive compounds in carrot waste for food applications and health benefits. Stud. Nat. Prod. Chem. 2020, 67, 307–344. [Google Scholar]
- Ma, T.; Tian, C.; Luo, J.; Zhou, R.; Sun, X.; Ma, J. Influence of technical processing units on polyphenols and antioxidant capacity of carrot (Daucus carrot L.) juice. Food Chem. 2013, 141, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Elik, A. Hot air-assisted radio frequency drying of black carrot pomace: Kinetics and product quality. Innov. Food Sci. Emerg. Technol. 2021, 73, 102800. [Google Scholar] [CrossRef]
- Santos, D.; Pintado, M.; da Silva, J.A.L. Potential nutritional and functional improvement of extruded breakfast cereals based on incorporation of fruit and vegetable by-products—A review. Trends Food Sci. Technol. 2022, 125, 136–153. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.-Z.; Atuna, R.A.; Salifu, R.; Nubalanaan, B.-A.; Amagloh, F.K.; Han, S.-Y. Physicochemical, oxidative stability and sensory properties of frankfurter-type sausage as influenced by the addition of carrot (Daucus carota) Paste. Foods 2021, 10, 3032. [Google Scholar] [CrossRef]
- Kumar, Y.; Tanwar, V.K.; Pandey, A.; Shukla, P.; Sharma, V. Development and quality assessment of chicken cutlets enrobed with bread crumbs vis-à-vis dried carrot pomace. Nutr. Food Sci. 2017, 47, 700–709. [Google Scholar] [CrossRef]
- Adrah, K.; Ananey-Obiri, D.; Tahergorabi, R. Physicochemical changes of deep-fat-fried chicken drumsticks treated with quercetin-in-edible coating during storage time. Foods 2021, 10, 467. [Google Scholar] [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Tańska, M.; Zadernowski, R.; Konopka, I. The quality of wheat bread supplemented with dried carrot pomace. Pol. J. Nat. Sci. 2007, 22, 126–136. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists; AACC: Washington, DC, USA, 2000. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 152–178. [Google Scholar]
- El Hariri, B.; Sallé, G.; Andary, C. Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L.). Protoplasma 1991, 162, 20–26. [Google Scholar] [CrossRef]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics, and color of Cabernet franc, Merlot, and Pinot noir wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a Phosphomolybdenum complex: Specific application to the determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- UNMS. Determination of Vitamin A and Its Pro-Vitamins; UNMS: Praha, Czechoslovakia, 1986. [Google Scholar]
- Turksoy, S.; Özkaya, B. Pumpkin and carrot pomace powders as a source of dietary fiber and their effects on the mixing properties of wheat flour dough and cookie quality. Food Sci. Technol. Res. 2011, 17, 545–553. [Google Scholar] [CrossRef]
- Kohajdova, Z.; Karovicova, J.; Jurasova, M. Influence of carrot pomace powder on the rheological characterstics of wheat flour dough and on wheat rolls quality. Acta Sci. Polonorum. Technol. Aliment. 2012, 11, 381–387. [Google Scholar]
- Kumar, K.; Kumar, N. Development of vitamin and dietary fibre enriched carrot pomace and wheat flour based buns. J. Pure Appl. Sci. Technol. 2012, 2, 107–115. [Google Scholar]
- Yusuf, E.; Tkacz, K.; Turkiewicz, I.P.; Wojdyło, A.; Nowicka, P. Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. Eur. Food Res. Technol. 2021, 247, 3053–3062. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Medouni, L.; Medouni-Adrar, S.; Arkoub, L.; Madani, K. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind. Crops Prod. 2013, 49, 668–674. [Google Scholar] [CrossRef]
- Murugan, R.; Parimelazhagan, T. Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn—An in vitro approach. J. King Saud Univ. Sci. 2014, 26, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Bebak, A. Aktywnosc biologiczna wybranych wyt}okow owocowych oraz warzywnych. Zywnosc Nauka Technol. Jakosc 2012, 19, 55–65. [Google Scholar]
- Sánchez-Rangel, J.C.; Benavides, J.; Jacobo-Velázquez, D.A. Valorization of carrot pomace: UVC induced accumulation of antioxidant phenolic compounds. Appl. Sci. 2021, 11, 10951. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, A.L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Reyes, L.F.; Miller, J.C.; Cisneros-Zevallos, L. Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genotypes. Am. Potato J. 2005, 82, 271–277. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Šulc, M.; Orsák, M.; Pivec, V.; Hejtmánková, A.; Dvořák, P.; Čepl, J. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem. 2009, 114, 836–843. [Google Scholar] [CrossRef]
- Surjadinata, B.B.; Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. UVA, UVB and UVC Light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding. Molecules 2017, 22, 668. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front. Plant Sci. 2015, 6, 837. [Google Scholar] [CrossRef] [PubMed]
- Santana-Gálvez, J.; Santacruz, A.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Postharvest wounding stress in horticultural crops as a tool for designing novel functional foods and beverages with enhanced nutraceutical content: Carrot juice as a case study. J. Food Sci. 2019, 84, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Kozłowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin—Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Katina, K.; Laitila, A.; Juvonen, R.; Liukkonen, K.-H.; Kariluoto, S.; Piironen, V.; Landberg, R.; Åman, P.; Poutanen, K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 2007, 24, 175–186. [Google Scholar] [CrossRef]
- Korus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; Sójka, M. Defatted strawberry and blackcurrant seeds as functional ingredients of gluten-free bread. J. Texture Stud. 2011, 43, 29–39. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple pomace as a source of bioactive polyphenol compounds in gluten-free breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef]
- Buchner, N.; Krumbein, A.; Rohn, S.; Kroh, L.W. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun. Mass Spectrom. 2006, 20, 3229–3235. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Wang, L.; Huber, G.M.; Pitts, N.L. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem. 2008, 107, 1217–1224. [Google Scholar] [CrossRef]
- Barnes, J.S.; Foss, F.W.; Schug, K.A. Thermally accelerated oxidative degradation of quercetin using continuous flow kinetic electrospray-ion trap-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Zieliński, H. Low molecular weight antioxidants and other biologically active components of buckwheat seeds. Eur. J. Plant Sci. Biotech 2009, 3, 29–38. [Google Scholar]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Sensoy, I.; Rosen, R.T.; Ho, C.-T.; Karwe, M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006, 99, 388–393. [Google Scholar] [CrossRef]
- Nanditha, B.; Prabhasankar, P. Antioxidants in bakery products: A review. Crit. Rev. Food Sci. Nutr. 2008, 49, 1–27. [Google Scholar] [CrossRef]
- Kaur, S.; Das, M. Functional foods: An overview. Food Sci. Biotechnol. 2011, 20, 861–875. [Google Scholar] [CrossRef]
- Marenda, F.R.B.; Mattioda, F.; Demiate, I.M.; de Francisco, A.; Petkowicz, C.L.D.O.; Canteri, M.H.G.; Amboni, R.D.D.M.C. Advances in studies using vegetable wastes to obtain pectic substances: A review. J. Polym. Environ. 2019, 27, 549–560. [Google Scholar] [CrossRef]
- Hernández-Ortega, M.; Kissangou, G.; Necoechea-Mondragón, H.; Sánchez-Pardo, M.E.; Ortiz-Moreno, A. Microwave dried carrot pomace as a source of fiber and carotenoids. Food Nutr. Sci. 2013, 04, 1037–1046. [Google Scholar] [CrossRef]
- Holasova, M.; Fiedlerova, V.; Smrcinova, H.; Orsak, M.; Lachman, J.; Vavreinova, S. Buckwheat—The source of antioxidant activity in functional foods. Food Res. Int. 2002, 35, 207–211. [Google Scholar] [CrossRef]
- Peterson, D.M.; Hahn, M.J.; Emmons, C.L. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 2002, 79, 473–478. [Google Scholar] [CrossRef]
- Igielska-Kalwat, J.; Gościańska, J.; Nowak, I. Carotenoids as natural antioxidants. Postepy Hig. I Med. Dosw. 2015, 69, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Vita, J.A. Polyphenols and cardiovascular disease: Effects on endothelial and platelet function. Am. J. Clin. Nutr. 2005, 81, 292S–297S. [Google Scholar] [CrossRef] [PubMed]
- Bartoń, H.; Fołta, M.; Zachwieja, Z. Zastosowanie metod FRAP, ABTS i DPPH w badaniu aktywnosci antyoksydacyjnej produktow spozywczych. Now. Lek. 2005, 74, 510–513. [Google Scholar]
- Cybul, M. Przeglad metod stosowanych w analizie antyoksydacyjnych wyciagow roslinnych. Herba Pol. 2008, 54, 68–78. [Google Scholar]
- Voong, K.; Norton, A.; Mills, T.; Norton, I. Characterisation of deep-fried batter and breaded coatings. Food Struct. 2018, 16, 43–49. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
Property | Wheat Flour | WF + 15% CP |
---|---|---|
Moisture content [%] | 12.7 ± 0.1 b | 11.7 ± 0.1 a |
Water absorption [%] | 54.0 ± 0.1 a | 63.7 ± 0.3 b |
Development time [min] | 1.5 ± 0.1 a | 6.0 ± 0.3 b |
Stability [min] | 4.3 ± 0.1 a | 7.3 ± 0.1 b |
Property | Wheat Bread | CP Bread |
---|---|---|
Weight | 281.75 ± 2.22 b | 271.75 ± 4.64 a |
Volume | 556.99 ± 4.20 b | 435.39 ± 1.77 a |
Specific volume | 1.98 ± 0.03 b | 1.60 ± 0.03 a |
Baking loss | 12.65 ± 0.07 a | 16.05 ± 0.35 b |
Property | Carrot Pomace | Wheat Bread | CP Bread |
---|---|---|---|
Dry matter [%] | 94.1 ± 0.12 c | 79.4 ± 0.17 b | 74.4 ± 0.16 a |
Protein [% d.m.] | 8.32 ± 0.99 b | 13.15 ± 0.17 a | 13.09 ± 0.60 a |
Fat [% d.m.] | 1.386 ± 0.179 c | 0.155 ± 0.064 a | 0.259 ± 0.127 b |
Ash [% d.m.] | 4.16 ± 0.05 c | 0.87 ± 0.11 a | 1.21 ± 0.10 b |
Carrot Pomace | Control Bread | CP Bread | |
---|---|---|---|
TPC-FC [mg catechine/g] | 428.88 ± 20.74 c | 22.56 ± 0.11 a | 170.17 ± 11.12 b |
Flavonoids [mg rutin/g] | 72.26 ± 17.00 c | 3.02 ± 0.20 a | 28.32 ± 2.07 b |
TPC-NFC [mg catechine/g] | 372.36 ± 36.11 c | 16.49 ± 0.01 a | 151.21 ± 16.69 b |
Phenolic acids [mg ferulic acid/g] | 20.77 ± 2.08 c | 3.09 ± 0.01 a | 5.48 ± 0.01 b |
Flavonols [mg quercitin/g] | 14.34 ± 1.14 b | - | 8.34 ± 1.27 a |
Carotenoids [mg/g] | 0.56 ± 0.02 b | - | 0.048 ± 0.002 a |
Anthocyanins | - | - | - |
Carrot Pomace | Control Bread | CP Bread | |
---|---|---|---|
DPPH [TEAC] | 4.98 ± 0.25 c | 2.94 ± 0.08 a | 3.89 ± 0.32 b |
ABTS [TEAC] | 19.57 ± 0.21 c | 11.35 ± 0.13 a | 14.96 ± 0.11 b |
FRAP [TEAC] | 39.67 ± 0.66 c | 1.94 ± 0.18 a | 7.56 ± 0.12 b |
FOMO [TEAC] | 243.39 ± 2.42 c | 20.02 ± 1.42 a | 64.63 ± 1.62 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziobro, R.; Ivanišová, E.; Bojňanská, T.; Gumul, D. Retention of Antioxidants from Dried Carrot Pomace in Wheat Bread. Appl. Sci. 2022, 12, 9735. https://doi.org/10.3390/app12199735
Ziobro R, Ivanišová E, Bojňanská T, Gumul D. Retention of Antioxidants from Dried Carrot Pomace in Wheat Bread. Applied Sciences. 2022; 12(19):9735. https://doi.org/10.3390/app12199735
Chicago/Turabian StyleZiobro, Rafał, Eva Ivanišová, Tatiana Bojňanská, and Dorota Gumul. 2022. "Retention of Antioxidants from Dried Carrot Pomace in Wheat Bread" Applied Sciences 12, no. 19: 9735. https://doi.org/10.3390/app12199735
APA StyleZiobro, R., Ivanišová, E., Bojňanská, T., & Gumul, D. (2022). Retention of Antioxidants from Dried Carrot Pomace in Wheat Bread. Applied Sciences, 12(19), 9735. https://doi.org/10.3390/app12199735