A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Microgrid Location Methodology
- First, each smart critical infrastructure is analyzed individually to determine the relative importance of each node/component of the infrastructure.
- Second, a geographic grid of the city is defined, and the infrastructures are aligned spatially.
- An optimization problem is formulated to determine the place in a geographic grid that optimizes a combination of the importance of nodes/components across infrastructures and the cost of the microgrid.
- Following the three-step procedure, the analysis of critical infrastructures is considered to define the comparable significance of elements.
2.2. Critical Infrastructure Analysis
2.2.1. Interconnected Infrastructure
Degree Centrality
Betweenness Centrality
Closeness Centrality
Power Requirements
Total Weighted Value ()
2.2.2. Standalone Infrastructure
Healthcare
Water System
Cellular Network
Emergency Shelter
Total Weighted Value ()
2.3. Optimization Model Formulation
2.4. Critical Node Identification
2.4.1. Combined Metric
2.4.2. List of Lists
2.5. Microgrid Location Heuristics
3. Results and Discussions
3.1. Case Study
3.1.1. Healthcare
3.1.2. Water System
3.1.3. Cellular Network
3.1.4. Emergency Shelter
3.2. Heuristic
3.3. Optimization Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank Open Data. Available online: https://data.worldbank.org (accessed on 30 August 2021).
- Almaleh, A.; Tipper, D. Risk-Based Criticality Assessment for Smart Critical Infrastructures. Infrastructures 2022, 7, 3. [Google Scholar] [CrossRef]
- National Centers for Environmental Information (NCEI). Billion-Dollar Weather and Climate Disaster: Overview. July 2016. Available online: http://www.ncdc.noaa.gov/billions (accessed on 30 July 2022).
- US Department of Energy. Economic Benefits of Increasing Electric Grid Resilience to Weather Outages. August 2013. Available online: http://energy.gov/sites (accessed on 10 June 2022).
- Wang, Y.; Chen, C.; Wang, J.; Baldick, B. Research on Resilience of Power Systems Under Natural Disasters. IEEE Trans. Power Syst. 2016, 31, 1604–1613. [Google Scholar] [CrossRef]
- Kelly-Pitou, K.; Ostroski, A.; Contino, B.; Grainger, B.; Kwasinski, A.; Reed, G. Microgrids and resilience: Using a systems approach to achieve climate adaptation and mitigation goals. Electr. J. 2017, 30, 23–31. [Google Scholar] [CrossRef]
- Kamboj, A.; Chanana, S. Planning and operational strategy of a renewable energy microgrid considering reliability. In Proceedings of the IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 4–6 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Hanna, R.; Ghonima, M.; Kleissl, J.; Tynan, G.; Victor, D. Evaluating Business Models for Microgrids: Interaction of Technology and Policy. Energy Policy 2017, 103, 47–61. [Google Scholar] [CrossRef]
- Alqahtani, A.; Abhishek, R.; Tipper, D.; Medhi, D. Disaster Recovery Power and Communications for Smart Critical Infrastructures. In Proceedings of the IEEE International Conference on Communications, Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Kabalcı, E.; Kabalcı, Y.; Siano, P. Design and implementation of a smart metering infrastructure for low voltage microgrids. Int. J. Electr. Power Energy Syst. 2022, 134, 107375. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Qiu, F.; Zhao, D. Resilient Distribution System by Microgrids Formation After Natural Disasters. IEEE Trans. Smart Grid 2016, 7, 958–966. [Google Scholar] [CrossRef]
- Dimitrov, P.; Piroddi, L.; Prandini, M. Distributed allocation of a shared energy storage system in a microgrid. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3551–3556. [Google Scholar]
- Habibi Rad, M.; Mojtahedi, M.; Ostwald, M.J. Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis. Buildings 2021, 11, 411. [Google Scholar] [CrossRef]
- Lewis, T.G. Critical Infrastructure Protection in Homeland Security: Defending a Networked Nation; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Banerjee, J.; Basu, K.; Sen, A. On Hardening Problems in Critical Infrastructure Systems. Int. J. Crit. Infrastruct. Prot. 2018, 23, 49–67. [Google Scholar] [CrossRef]
- Bilis, E.I.; Kroger, W.; Nan, C. Performance of electric power systems under physical malicious attacks. IEEE Syst. J. 2013, 7, 854–865. [Google Scholar] [CrossRef]
- Nasiruzzaman, A.; Pota, H. Critical node identification of smart power system using complex network framework based centrality approach. In Proceedings of the North American Power Symposium (NAPS), Boston, MA, USA, 4–6 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Stergiopoulos, G.; Kotzanikolaou, P.; Theocharidou, M.; Gritzalis, D. Risk mitigation strategies for critical infrastructures based on graph centrality analysis. Int. J. Crit. Infrastruct. Prot. 2015, 10, 34–44. [Google Scholar] [CrossRef]
- Faramondi, L.; Setola, R.; Panzieri, S.; Pascucci, F.; Oliva, G. Finding critical nodes in infrastructure networks. Int. J. Crit. Infrastruct. Prot. 2018, 20, 3–15. [Google Scholar] [CrossRef]
- Nandanoori, S.P.; Guan, S.; Kundu, S.; Pal, S.; Agarwal, K.; Wu, Y.; Choudhury, S. Graph neural network and koopman models for learning networked dynamics: A comparative study on power grid transients prediction. IEEE Access 2022, 10, 32337–32349. [Google Scholar] [CrossRef]
- Gupta, B.B.; Gaurav, A.; Marín, E.C.; Alhalabi, W. Novel Graph-Based Machine Learning Technique to Secure Smart Vehicles in Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Doyal, A. Prioritizing Water Distribution Network Asset Maintenance Using Graph Theory Methods; Technical Report; Air Force Institute Of Technology: Wright-Patterson, OH, USA, 2022. [Google Scholar]
- Long, X.; Tipper, D.; Gomes, T. Measuring the Survivability of Networks to Geographic Correlated Failures. Opt. Switch. Netw. 2014, 14, 117–133. [Google Scholar] [CrossRef]
- Juszczak, P.; Tax, D.; Duin, R.P. Feature scaling in support vector data description. In Proceedings of the 8th Annual Conference of the Advanced School for Computing and Imaging 2002, Lochem, The Netherlands, 19–21 June 2002; pp. 95–102. [Google Scholar]
- Bruce, P.; Bruce, A. Practical Statistics for Data Scientists: 50 Essential Concepts; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Global Specialist in Energy Management And Automation Schneider Electric. 2017. Available online: https://www.schneider-electric.us/en/ (accessed on 30 July 2022).
- McCoy, J.; Johnston, K. Environmental Systems Research Institute. Using ArcGIS Spatial Analyst: GIS by ESRI; Environmental Systems Research Institute: Redlands, CA, USA, 2001. [Google Scholar]
- Pacific Gas Electric and California Public Utilities Commission. Municipal Water Treatment Plant Energy Baseline Study Characteristics; California Public Utilities Commission: San Francisco, CA, USA, 2006. [Google Scholar]
- Houston Convention Center Shelters One More Harvey Survivor: An Opera Company. The New York Times. 2017. Available online: https://www.nytimes.com/2017/09/26/arts/music/houston-grand-opera-hurricane-harvey.html (accessed on 22 June 2022).
- Energy Information Administration. Annual Energy Outlook 2010; Department of Energy, Energy Information Administration: Washington, DC, USA, 2010; Volume 92010, pp. 1–15.
- Badger, J.; Volker, P.J.H. Efficient large-scale wind turbine deployment can meet global electricity generation needs. Proc. Natl. Acad. Sci. USA 2017, 114, E8945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoonenberg, W.C.; Farid, A.M. Modeling smart cities with hetero-functional graph theory. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1627–1632. [Google Scholar]
- Arnold, O.; Richter, F.; Fettweis, G.; Blume, O. Power consumption modeling of different base station types in heterogeneous cellular networks. In Proceedings of the Future Network and Mobile Summit, Florence, Italy, 16–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8. [Google Scholar]
- Homer Energy. Available online: http://www.homerenergy.com (accessed on 30 July 2022).
Node ID | Sum | Rank (Sum) | ||||
---|---|---|---|---|---|---|
172 | 2.737 | 0.525 | 3.553 | −0.023 | 6.792 | 1 |
197 | 3.874 | 0.537 | 2.075 | 0.130 | 6.616 | 2 |
133 | 2.881 | 0.529 | 2.814 | −0.227 | 5.998 | 3 |
49 | 4.075 | 0.513 | 2.075 | −0.872 | 5.791 | 4 |
144 | 2.461 | 0.493 | 1.337 | 1.450 | 5.740 | 5 |
160 | 1.390 | 0.465 | 2.075 | 1.416 | 5.346 | 6 |
1 | 2.481 | 0.548 | 1.337 | 0.680 | 5.046 | 7 |
182 | 1.548 | 0.496 | 2.075 | 0.750 | 4.870 | 8 |
32 | 2.739 | 0.502 | 1.337 | 0.209 | 4.786 | 9 |
5 | 1.878 | 0.533 | 2.075 | 0.276 | 4.762 | 10 |
10 | 1.024 | 0.455 | 1.337 | 1.468 | 4.284 | 11 |
188 | 1.177 | 0.450 | 2.075 | 0.556 | 4.258 | 12 |
195 | 1.135 | 0.442 | 1.337 | 1.289 | 4.203 | 13 |
162 | 1.952 | 0.500 | 2.075 | −0.532 | 3.995 | 14 |
142 | 1.287 | 0.498 | 1.337 | 0.735 | 3.857 | 15 |
137 | 1.249 | 0.479 | 1.337 | 0.699 | 3.765 | 16 |
130 | 1.412 | 0.493 | 0.598 | 1.150 | 3.653 | 17 |
86 | 1.350 | 0.496 | 1.337 | 0.358 | 3.541 | 18 |
116 | 0.284 | 0.488 | 1.337 | 1.384 | 3.493 | 19 |
30 | 1.084 | 0.512 | 0.598 | 1.244 | 3.438 | 20 |
Node ID | Sum | Rank (Sum) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
144 | 2.461 | 7 | 0.493 | 28 | 1.337 | 11 | 1.450 | 7 | 53 | 1 |
1 | 2.481 | 6 | 0.548 | 1 | 1.337 | 11 | 0.680 | 64 | 82 | 2 |
160 | 1.390 | 22 | 0.465 | 48 | 2.075 | 3 | 1.416 | 12 | 85 | 3 |
182 | 1.548 | 20 | 0.496 | 23 | 2.075 | 3 | 0.750 | 55 | 101 | 4 |
197 | 3.874 | 2 | 0.537 | 2 | 2.075 | 3 | 0.130 | 97 | 104 | 5 |
10 | 1.024 | 34 | 0.455 | 53 | 1.337 | 11 | 1.468 | 6 | 104 | 5 |
30 | 1.084 | 31 | 0.512 | 13 | 0.598 | 34 | 1.244 | 26 | 104 | 5 |
5 | 1.878 | 13 | 0.533 | 5 | 2.075 | 3 | 0.276 | 85 | 106 | 8 |
116 | 0.284 | 54 | 0.488 | 31 | 1.337 | 11 | 1.384 | 14 | 110 | 9 |
142 | 1.287 | 25 | 0.498 | 21 | 1.337 | 11 | 0.735 | 57 | 114 | 10 |
130 | 1.412 | 21 | 0.493 | 29 | 0.598 | 34 | 1.150 | 34 | 118 | 11 |
32 | 2.739 | 4 | 0.502 | 18 | 1.337 | 11 | 0.209 | 89 | 122 | 12 |
176 | 0.758 | 40 | 0.500 | 20 | 0.598 | 34 | 1.202 | 29 | 123 | 13 |
172 | 2.737 | 5 | 0.525 | 8 | 3.553 | 1 | −0.023 | 110 | 124 | 14 |
50 | 0.883 | 37 | 0.519 | 9 | 1.337 | 11 | 0.628 | 67 | 124 | 14 |
195 | 1.135 | 29 | 0.442 | 63 | 1.337 | 11 | 1.289 | 23 | 126 | 16 |
4 | 0.996 | 35 | 0.482 | 35 | 0.598 | 34 | 1.251 | 25 | 129 | 17 |
133 | 2.881 | 3 | 0.529 | 6 | 2.814 | 2 | −0.227 | 120 | 131 | 18 |
132 | 0.303 | 52 | 0.508 | 15 | 0.598 | 34 | 1.156 | 32 | 133 | 19 |
137 | 1.249 | 26 | 0.479 | 38 | 1.337 | 11 | 0.699 | 62 | 137 | 20 |
Node Ranking | Combined | List |
---|---|---|
1 | 172 | 144 |
2 | 197 | 1 |
3 | 133 | 160 |
4 | 49 | 182 |
5 | 144 | 197 |
6 | 160 | 10 |
7 | 1 | 30 |
8 | 182 | 5 |
9 | 32 | 116 |
10 | 5 | 142 |
11 | 10 | 130 |
12 | 188 | 32 |
13 | 195 | 176 |
14 | 162 | 172 |
15 | 142 | 50 |
16 | 137 | 195 |
17 | 130 | 4 |
18 | 86 | 133 |
19 | 116 | 132 |
20 | 30 | 137 |
Hospital | Power Consumption (kWh) | Population | Size (Beds) | |
---|---|---|---|---|
West Penn Hospital | 9,510,000 | 12,915 | 317 | −0.034 |
UPMC Montefiore | 7,500,000 | 24,080 | 250 | 0.976 |
UPMC Mercy | 14,460,000 | 15,714 | 482 | 2.361 |
Allegheny Hospital | 11,430,000 | 5949 | 381 | −0.402 |
UPMC St. Margaret | 7,470,000 | 5200 | 249 | −2.078 |
Children’s Hospital | 8,880,000 | 15,500 | 296 | 0.136 |
LifeCare Hospitals | 7,080,000 | 9555.00 | 236 | −1.529 |
UPMC Presbyterian | 23,850,000 | 24,080.00 | 795 | 7.396 |
VA Healthcare | 4,380,000 | 14,117 | 146 | −1.854 |
UPMC Shadyside | 15,600,000 | 15,916 | 520 | 2.841 |
Magee’s Hospital | 10,800,000 | 10,850 | 360 | 0.140 |
St. Clair Hospital | 9,840,000 | 4569 | 328 | −1.249 |
Children’s Genetics | 7,500,000 | 10,850 | 250 | −1.156 |
Facility | Capacity (Million G/Day) | Power Consumption (kWh) | |
---|---|---|---|
Pittsburgh WTP | 70,000,000 | 327,600,000 | 3.029 |
Brush WTP | 1,500,000 | 7,020,000 | −1.387 |
Plum Creek WTP | 2,234,669 | 10,458,250.9 | −1.340 |
Harmar Twp WTP | 1,500,000 | 7,020,000 | −1.387 |
Westview WTP | 39,850,000 | 186,498,000 | 1.085 |
eNB ID | Coverage Index | Population Covered | Power Consumption (kWh) | |
---|---|---|---|---|
780206 | 3 | 4475 | 25 | 2.156 |
780007 | 2 | 16,227 | 20 | 1.848 |
780165 | 2 | 5338 | 20 | −0.141 |
780059 | 3 | 7119 | 25 | 2.639 |
780213 | 1 | 15,500 | 15 | −0.739 |
780108 | 2 | 15,500 | 20 | 1.715 |
780399 | 1 | 12,915 | 15 | −1.211 |
780184 | 1 | 5096 | 15 | −2.639 |
780017 | 3 | 843 | 25 | 1.492 |
780527 | 1 | 8424 | 15 | −2.032 |
780037 | 1 | 8424 | 15 | −2.032 |
780364 | 1 | 24,080 | 15 | 0.828 |
780154 | 2 | 6446 | 20 | 0.061 |
780178 | 2 | 6446 | 20 | 0.061 |
780560 | 3 | 6446 | 25 | 2.516 |
780225 | 2 | 2710 | 20 | −0.621 |
780163 | 3 | 7622 | 25 | 2.731 |
780032 | 1 | 2688 | 15 | −3.079 |
780540 | 3 | 5948 | 25 | 2.425 |
780167 | 2 | 4593 | 20 | −0.277 |
780477 | 2 | 4593 | 20 | −0.277 |
780169 | 1 | 3316 | 15 | −2.965 |
780218 | 1 | 6078 | 15 | −2.460 |
Facility | Power Consumption (kWh) | Size | Occupancy | |
---|---|---|---|---|
Petersen Center | 224,000 | 16,000 | 12,508 | −0.198 |
PPG Paints Arena | 10,080,000 | 720,000 | 19,758 | −0.017 |
Convention Center | 21,000,000 | 1,500,000 | 109,445 | 2.225 |
Irish Centre | 168,000 | 12,000 | 315 | −0.503 |
Sigmas Center | 140,000 | 10,000 | 150 | −0.507 |
Sherwood Center | 252,000 | 18,000 | 500 | −0.499 |
Healthcare | Water | Cellular | Shelter | TI | Rank | |
---|---|---|---|---|---|---|
1 | 0.5793 | 0.5598 | 0 | 1.1171 | 2.2562 | 5 |
2 | 0 | 0 | 0 | 0.0527 | 0.0527 | 8 |
3 | 0.3497 | 1 | 3.0117 | 0 | 4.3614 | 3 |
4 | 0 | 0 | 0 | 0 | 0 | 9 |
5 | 8.7257 | 0 | 3.5511 | 4.0278 | 16.3046 | 1 |
6 | 3.2216 | 0 | 4.3177 | 0.1063 | 7.6456 | 2 |
7 | 0.5609 | 0 | 0 | 0 | 0.5609 | 7 |
8 | 0 | 0 | 1.2411 | 0 | 1.2411 | 6 |
9 | 0 | 0.0107 | 2.9535 | 0 | 2.9642 | 4 |
Healthcare | Water | Cellular | Shelter | Total | |
---|---|---|---|---|---|
9 | 0 | 3285 | 15 | 0 | 3300 |
8 | 0 | 0 | 45 | 0 | 45 |
7 | 27,333.3 | 0 | 0 | 0 | 27,333 |
6 | 94,416.7 | 0 | 95 | 44,467 | 138,979 |
5 | 189,000 | 0 | 90 | 88,336 | 277,426 |
4 | 0 | 0 | 0 | 0 | 0 |
3 | 20,750 | 98,280 | 75 | 0 | 119,105 |
2 | 0 | 0 | 0 | 389 | 389 |
1 | 33,000 | 55,949 | 0 | 22,400 | 111,349 |
Total | 364,500 | 157,514 | 320 | 155,592 | 677,926 |
Microgrid Quantity | 1 | 2 | 3 |
---|---|---|---|
Heuristic | 5 | 5, 5 | 5, 5, 6 |
Optimization Model | 5 | 5, 5 | 5, 5, 6 |
5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0 | |
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
Hospital | Water | Cellular | Shelter | Total | |
---|---|---|---|---|---|
5 | 68.13% | 0.00% | 0.03% | 31.84% | 100.00% |
6 | 99.41% | 0.00% | 0.10% | 0.49% | 100.00% |
3 | 17.42% | 82.52% | 0.06% | 0.00% | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaleh, A.; Tipper, D.; Al-Gahtani, S.F.; El-Sehiemy, R. A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques. Appl. Sci. 2022, 12, 9756. https://doi.org/10.3390/app12199756
Almaleh A, Tipper D, Al-Gahtani SF, El-Sehiemy R. A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques. Applied Sciences. 2022; 12(19):9756. https://doi.org/10.3390/app12199756
Chicago/Turabian StyleAlmaleh, Abdulaziz, David Tipper, Saad F. Al-Gahtani, and Ragab El-Sehiemy. 2022. "A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques" Applied Sciences 12, no. 19: 9756. https://doi.org/10.3390/app12199756
APA StyleAlmaleh, A., Tipper, D., Al-Gahtani, S. F., & El-Sehiemy, R. (2022). A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques. Applied Sciences, 12(19), 9756. https://doi.org/10.3390/app12199756