Parameter Optimisation in Selective Laser Melting on C300 Steel
Abstract
:1. Introduction
2. Materials
3. Experimental Methodology
- The use of three factors, namely, the parameters , and .
- The choice of a cubic domain.
- The coding of the interval values for the three parameters listed in Table 2 using Expression (2).
- The cubic experiment matrix with three levels for each input parameter with two repetitions at the domain midpoint, in order to capture the variability of the test (experiment NUM. 15 and 16).
- The use of Expression (1) to fit the four response surfaces for the corresponding outcome properties.
4. Result and Discussion
- Creation of a three-dimensional matrix n3 with the values of , and , within the range ([−1, 1], [−1, 1], [−1, 1]).
- Calculation of the response to be optimised for each point by means of expressions 3 to 6 and the corresponding output matrix.
- Obtaining the maximum response within the experiment matrix and its corresponding coded parameters [, , ].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Günther, J.; Krewerth, D.; Lippmann, T.; Leuders, S.; Tröster, T.; Weidner, A.; Biermann, H.; Niendorf, T. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue 2017, 94, 236–245. [Google Scholar] [CrossRef]
- Shi, W.; Li, J.; Jing, Y.; Liu, Y.; Lin, Y.; Han, Y. Combination of Scanning Strategies and Optimization Experiments for Laser Beam Powder Bed Fusion of Ti-6Al-4V Titanium Alloys. Appl. Sci. 2022, 12, 6653. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef]
- Hind, A.; Maalouf, M.; Barsoum, I.; An, H. Truncated Newton Kernel Ridge Regression for Prediction of Porosity in Additive Manufactured SS316L. Appl. Sci. 2022, 12, 4252. [Google Scholar] [CrossRef]
- Leary, M. Surface roughness optimisation for selective laser melting (SLM): Accommodating relevant and irrelevant surfaces. In Laser Additive Manufacturing; Woodhead Publishing: Thorston, UK, 2017; pp. 99–118. [Google Scholar]
- Yang, K.-R.; Hanawa, T.; Kwon, T.-Y.; Min, B.-K.; Hong, M.-H. Mechanical Property Comparison of Ni–Cr–Mo Alloys Fabricated via One Conventional and Two New Digital Manufacturing Techniques. Appl. Sci. 2021, 11, 9308. [Google Scholar] [CrossRef]
- Kasperovich, G.; Hausmann, J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 2015, 220, 202–214. [Google Scholar] [CrossRef]
- Hudák, R.; Schnitzer, M.; Králová, Z.; Gorejová, R.; Mitrík, L.; Rajťúková, V.; Tóth, T.; Kovačević, M.; Riznič, M.; Oriňaková, R.; et al. Additive Manufacturing of Porous Ti6Al4V Alloy: Geometry Analysis and Mechanical Properties Testing. Appl. Sci. 2021, 11, 2611. [Google Scholar] [CrossRef]
- Courtright, Z.S.; Leclerc, N.P.; Kim, H.N.; Kalidindi, S.R. Critical Comparison of Spherical Microindentation, Small Punch Test, and Uniaxial Tensile Testing for Selective Laser Melted Inconel 718. Appl. Sci. 2021, 11, 1061. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Bai, Q. Defect Formation Mechanisms in Selective Laser Melting: A review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Naceur, H.; Ben-Elechi, S.; Batoz, J.; Knopf-Lenoir, C. Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater. Des. 2007, 29, 781–790. [Google Scholar] [CrossRef]
- Dehghani, K.; Nekahi, A.; Mirzaie, M.A.M. Using response surface methodology to optimize the strain aging response of AA5052. Mater. Sci. Eng. A 2010, 527, 7442–7451. [Google Scholar] [CrossRef]
- Cuesta, I.; Alegre, J.M. Determination of plastic collapse load of pre-cracked Small Punch Test specimens by means of response surfaces. Eng. Fail. Anal. 2012, 23, 1–9. [Google Scholar] [CrossRef]
- Wei, L.; Yuying, Y.; Zhongwen, X.; Lihong, Z. Springback control of sheet metal forming based on the response-surface method and multi-objective genetic algorithm. Mater. Sci. Eng. A 2009, 499, 325–328. [Google Scholar] [CrossRef]
- Hoseini, S.R.E.; Arabi, H.; Razavizadeh, H. Improvement in mechanical properties of C300 maraging steel by application of VAR process. Vacuum 2008, 82, 521–528. [Google Scholar] [CrossRef]
- Dehgahi, S.; Sanjari, M.; Ghoncheh, M.; Amirkhiz, B.S.; Mohammadi, M. Concurrent improvement of strength and ductility in heat-treated C300 maraging steels produced by laser powder bed fusion technique. Addit. Manuf. 2021, 39, 101847. [Google Scholar] [CrossRef]
- Khuri, A.I.; Cornell, J.A. Response Surfaces. Design and Analyses, Statistics: Textbooks and Monographs; Marcel Dekker: New York, NY, USA, 1987; p. 81. [Google Scholar]
- Kuehl, R.O. Diseño de Experimentos; International Thomson: St Miami, FL, USA, 2001. [Google Scholar]
- Montgomery, D.C. Diseño y Análisis de Experimentos; Grupo Editorial Iberoamérica: Mexico City, Mexico, 1991. [Google Scholar]
- ASTM E8/E8M-16a; Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/ (accessed on 1 June 2022).
Alloy | Ni | Mo | Co | Ti | C | Fe |
---|---|---|---|---|---|---|
C300 | 18 | 5.0 | 9.0 | 0.9 | <0.03 | Balance |
Variable Parameters | |
---|---|
Laser Power () | [200, 250] W |
Scanning Speed () | [500–800] mm/s |
Hatching Distance () | [0.08–0.14] mm |
Experiment | Experiment Matrix | Experimentation Plan | ||||
---|---|---|---|---|---|---|
NUM | Power | Speed | Hatching | Power (W) | Speed (mm/s) | Hatching (mm) |
1 | −1 | −1 | −1 | 200 | 500 | 0.08 |
2 | 1 | −1 | −1 | 250 | 500 | 0.08 |
3 | −1 | 1 | −1 | 200 | 800 | 0.08 |
4 | 1 | 1 | −1 | 250 | 800 | 0.08 |
5 | −1 | −1 | 1 | 200 | 500 | 0.14 |
6 | 1 | −1 | 1 | 250 | 500 | 0.14 |
7 | −1 | 1 | 1 | 200 | 800 | 0.14 |
8 | 1 | 1 | 1 | 250 | 800 | 0.14 |
9 | −1 | 0 | 0 | 200 | 650 | 0.11 |
10 | 1 | 0 | 0 | 250 | 650 | 0.11 |
11 | 0 | −1 | 0 | 225 | 500 | 0.11 |
12 | 0 | 1 | 0 | 225 | 800 | 0.11 |
13 | 0 | 0 | −1 | 225 | 650 | 0.08 |
14 | 0 | 0 | 1 | 225 | 650 | 0.14 |
15 | 0 | 0 | 0 | 225 | 650 | 0.11 |
16 | 0 | 0 | 0 | 225 | 650 | 0.11 |
Test | (MPa) | (MPa) | (%) | (MPa) |
---|---|---|---|---|
01 | 1145.7 | 1280.37 | 14.18 | 153.44 |
02 | 1089.5 | 1276.85 | 12.77 | 143.48 |
03 | 1162.2 | 1287.07 | 12.64 | 138.03 |
04 | 1160.1 | 1260.37 | 13.79 | 144.10 |
05 | 1096.1 | 1209.76 | 8.62 | 92.27 |
06 | 1147.9 | 1272.16 | 12.64 | 137.16 |
07 | 833.7 | 955.80 | 2.26 | 20.36 |
08 | 1042.4 | 1190.41 | 6.82 | 75.56 |
09 | 1111.3 | 1252.63 | 11.17 | 124.51 |
10 | 1167.2 | 1273.04 | 13.66 | 144.75 |
11 | 1147.9 | 1259.76 | 11.95 | 127.12 |
12 | 1086.3 | 1200.37 | 8.45 | 91.69 |
13 | 1141.3 | 1243.41 | 12.89 | 132.13 |
14 | 1121.7 | 1247.09 | 8.49 | 95.80 |
15 | 1151.3 | 1272.91 | 13.94 | 149.79 |
16 | 1122.2 | 1238.22 | 13.86 | 145.01 |
[−0.54, 0.13, −1] | [−1, −0.31, −1] | [1, −0.08, −0.66] | [−1, −0.19, −1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuesta, I.I.; Díaz, A.; Rojo, M.A.; Peral, L.B.; Martínez, J.; Alegre, J.M. Parameter Optimisation in Selective Laser Melting on C300 Steel. Appl. Sci. 2022, 12, 9786. https://doi.org/10.3390/app12199786
Cuesta II, Díaz A, Rojo MA, Peral LB, Martínez J, Alegre JM. Parameter Optimisation in Selective Laser Melting on C300 Steel. Applied Sciences. 2022; 12(19):9786. https://doi.org/10.3390/app12199786
Chicago/Turabian StyleCuesta, I. I., A. Díaz, M. A. Rojo, L. B. Peral, J. Martínez, and J. M. Alegre. 2022. "Parameter Optimisation in Selective Laser Melting on C300 Steel" Applied Sciences 12, no. 19: 9786. https://doi.org/10.3390/app12199786
APA StyleCuesta, I. I., Díaz, A., Rojo, M. A., Peral, L. B., Martínez, J., & Alegre, J. M. (2022). Parameter Optimisation in Selective Laser Melting on C300 Steel. Applied Sciences, 12(19), 9786. https://doi.org/10.3390/app12199786