Construction of Full-View Data from Limited-View Data Using Artificial Neural Network in the Inverse Scattering Problem
Abstract
:1. Introduction
2. Direct Scattering Problem and Subspace Migration
2.1. Two-Dimensional Direct Scattering Problem and Far-Field Pattern
2.2. Subspace Migration Imaging Algorithm
3. Artificial Neural Network Model and Training Results
3.1. The Case of Having Two Scatterers
3.2. The Case of Having Three Scatterers
4. Results of Numerical Simulations and Conclusions
4.1. The Case of Having Two Scatterers
4.2. The Case of Having Three Scatterers
- (i)
- For the cases of two and three scatterers, it is possible to develop a learning model that constructs the full view data from the limited view data with a small mean square error and similar data distribution compared to the ground truth data. In addition, the distributions of singular values calculated from the data output from the developed model or the results of imaging with the subspace migration algorithm were similar to the ground truth data, so the locations of the scatterers could be found.
- (ii)
- (iii)
- As shown in Figure 15, the error distribution of ground truth data and full view data output from the developed model shows that the error between group 1 and group 4 is relatively small. Since the full view data output from this learning model is from the limited view data of group 1, it can be seen that the correlation between the data of group 1 and the data of group 4 is high.
- (iv)
- (v)
- Attempts to solve the inverse scattering problem using artificial intelligence mainly used the image for training. However, this study shows that it can be efficient to use data collected from transmission and receiving antennas directly for training artificial intelligence.
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Acharya, R.; Wasserman, R.; Stevens, J.; Hinojosa, C. Biomedical imaging modalities: A tutorial. Comput. Med. Imaging Graph. 1995, 19, 3–25. [Google Scholar] [CrossRef]
- Ammari, H. An Introduction to Mathematics of Emerging Biomedical Imaging; Mathematics and Applications Series; Springer: Berlin, Germany, 2008; Volume 62. [Google Scholar]
- Ammari, H.; Bretin, E.; Garnier, J.; Kang, H.; Lee, H.; Wahab, A. Mathematical Methods in Elasticity Imaging; Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Arridge, S. Optical tomography in medical imaging. Inverse Prob. 1999, 15, R41–R93. [Google Scholar] [CrossRef]
- Bleistein, N.; Cohen, J.; Stockwell, J.S., Jr. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion; Springer: New York, NY, USA, 2001. [Google Scholar]
- Borcea, L. Electrical Impedance Tomography. Inverse Prob. 2002, 18, R99–R136. [Google Scholar] [CrossRef]
- Chandra, R.; Zhou, H.; Balasingham, I.; Narayanan, R.M. On the opportunities and challenges in microwave medical sensing and imaging. IEEE Trans. Biomed. Eng. 2015, 62, 1667–1682. [Google Scholar] [CrossRef]
- Cheney, M.; Issacson, D.; Newell, J.C. Electrical Impedance Tomography. SIAM Rev. 1999, 41, 85–101. [Google Scholar] [CrossRef]
- Chernyak, V.S. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Problems; Mathematics and Applications Series; Springer: New York, NY, USA, 1998. [Google Scholar]
- Dorn, O.; Lesselier, D. Level set methods for inverse scattering. Inverse Prob. 2006, 22, R67–R131. [Google Scholar] [CrossRef]
- Obeidat, H.; Shuaieb, W.; Obeidat, O.; Abd-Alhameed, R. A review of indoor localization techniques and wireless technologies. Wirel. Pers. Commun. 2021, 119, 289–327. [Google Scholar] [CrossRef]
- Seo, J.K.; Woo, E.J. Magnetic resonance electrical impedance tomography (MREIT). SIAM Rev. 2011, 53, 40–68. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Geophysical Inverse Theory and Regularization Problems; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Ahmad, S.; Strauss, T.; Kupis, S.; Khan, T. Comparison of statistical inversion with iteratively regularized Gauss Newton method for image reconstruction in electrical impedance tomography. Appl. Math. Comput. 2019, 358, 436–448. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Novotny, A.A. A new non-iterative reconstruction method for the electrical impedance tomography problem. Inverse Prob. 2017, 33, 35005. [Google Scholar] [CrossRef]
- Kristensen, P.K.; Martinez-Panedab, E. Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme. Theor. Appl. Fract. Mec. 2020, 107, 102446. [Google Scholar] [CrossRef]
- Liu, Z. A new scheme based on Born iterative method for solving inverse scattering problems with noise disturbance. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1021–1025. [Google Scholar] [CrossRef]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef]
- Souvorov, A.E.; Bulyshev, A.E.; Semenov, S.Y.; Svenson, R.H.; Nazarov, A.G.; Sizov, Y.E.; Tatsis, G.P. Microwave tomography: A two-dimensional Newton iterative scheme. IEEE Trans. Microwave Theory Tech. 1998, 46, 1654–1659. [Google Scholar] [CrossRef]
- Timonov, A.; Klibanov, M.V. A new iterative procedure for the numerical solution of coefficient inverse problems. Appl. Numer. Math. 2005, 55, 191–203. [Google Scholar] [CrossRef]
- Wick, T. Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation. Comput. Meth. Appl. Mech. Eng. 2017, 325, 577–611. [Google Scholar] [CrossRef]
- Aram, M.G.; Haghparast, M.; Abrishamian, M.S.; Mirtaheri, A. Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems. Inverse Probl. Sci. Eng. 2016, 24, 1347–1363. [Google Scholar] [CrossRef]
- Alqadah, H.F.; Valdivia, N. A frequency based constraint for a multi-frequency linear sampling method. Inverse Prob. 2013, 29, 95019. [Google Scholar] [CrossRef]
- Colton, D.; Haddar, H.; Monk, P. The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 2002, 24, 719–731. [Google Scholar] [CrossRef]
- Cheney, M. The linear sampling method and the MUSIC algorithm. Inverse Prob. 2001, 17, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Park, W.K. Asymptotic properties of MUSIC-type imaging in two-dimensional inverse scattering from thin electromagnetic inclusions. SIAM J. Appl. Math. 2015, 75, 209–228. [Google Scholar] [CrossRef]
- Park, W.K. Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix. Mech. Syst. Signal Proc. 2021, 153, 107501. [Google Scholar] [CrossRef]
- Ruvio, G.; Solimene, R.; D’Alterio, A.; Ammann, M.J.; Pierri, R. RF breast cancer detection employing a noncharacterized vivaldi antenna and a MUSIC-inspired algorithm. Int. J. RF Microwave Comput. Aid. Eng. 2013, 23, 598–609. [Google Scholar] [CrossRef]
- Joh, Y.D.; Kwon, Y.M.; Park, W.K. MUSIC-type imaging of perfectly conducting cracks in limited-view inverse scattering problems. Appl. Math. Comput. 2014, 240, 273–280. [Google Scholar] [CrossRef]
- Chae, S.; Ahn, C.Y.; Park, W.K. Localization of small anomalies via orthogonality sampling method from scattering parameters. Electronics 2020, 9, 1119. [Google Scholar] [CrossRef]
- Ito, K.; Jin, B.; Zou, J. A direct sampling method to an inverse medium scattering problem. Inverse Prob. 2012, 28, 25003. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M.; Park, W.K. Direct sampling method for imaging small dielectric inhomogeneities: Analysis and improvement. Inverse Prob. 2018, 34, 95005. [Google Scholar] [CrossRef]
- Ammari, H.; Garnier, J.; Jugnon, V.; Kang, H. Stability and resolution analysis for a topological derivative based imaging functional. SIAM J. Control. Optim. 2012, 50, 48–76. [Google Scholar] [CrossRef]
- Louër, F.L.; Rapún, M.L. Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I: One step method. SIAM J. Imag. Sci. 2017, 10, 1291–1321. [Google Scholar] [CrossRef]
- Park, W.K. Performance analysis of multi-frequency topological derivative for reconstructing perfectly conducting cracks. J. Comput. Phys. 2017, 335, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Ammari, H.; Asch, M.; Bustos, L.G.; Jugnon, V.; Kang, H. Transient imaging with limited-view data. SIAM J. Imaging Sci. 2011, 4, 1097–1121. [Google Scholar] [CrossRef]
- Ahn, C.Y.; Chae, S.; Park, W.K. Fast identification of short, sound-soft open arcs by the orthogonality sampling method in the limited-aperture inverse scattering problem. Appl. Math. Lett. 2020, 109, 106556. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Isernia, T. Boundary indicator for aspect limited sensing of hidden dielectric objects. IEEE Geosci. Remote Sens. Lett. 2018, 15, 838–842. [Google Scholar] [CrossRef]
- Funes, J.F.; Perales, J.M.; Rapún, M.L.; Vega, J.M. Defect detection from multi-frequency limited data via topological sensitivity. J. Math. Imaging Vis. 2016, 55, 19–35. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M.; Ahn, C.Y.; Ha, T.; Park, W.K. Single- and multi-frequency direct sampling methods in limited-aperture inverse scattering problem. IEEE Access 2020, 8, 121637–121649. [Google Scholar] [CrossRef]
- Kang, S.; Park, W.K. Application of MUSIC algorithm for a fast identification of small perfectly conducting cracks in limited-aperture inverse scattering problem. Comput. Math. Appl. 2022, 117, 97–112. [Google Scholar] [CrossRef]
- Park, W.K. Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems. J. Comput. Phys. 2015, 283, 52–80. [Google Scholar] [CrossRef]
- Park, W.K. A novel study on the MUSIC-type imaging of small electromagnetic inhomogeneities in the limited-aperture inverse scattering problem. J. Comput. Phys. 2022, 460, 111191. [Google Scholar] [CrossRef]
- Park, W.K. Real-time detection of small anomaly from limited-aperture measurements in real-world microwave imaging. Mech. Syst. Signal Proc. 2022, 171, 108937. [Google Scholar] [CrossRef]
- Zinn, A. On an optimisation method for the full- and the limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle. Inverse Prob. 1989, 5, 239–253. [Google Scholar] [CrossRef]
- Ammari, H.; Kang, H. Reconstruction of Small Inhomogeneities from Boundary Measurements; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2004; Volume 1846. [Google Scholar]
- Ammari, H.; Garnier, J.; Kang, H.; Park, W.K.; Sølna, K. Imaging schemes for perfectly conducting cracks. SIAM J. Appl. Math. 2011, 71, 68–91. [Google Scholar] [CrossRef]
- Huang, K.; Sølna, K.; Zhao, H. Generalized Foldy-Lax formulation. J. Comput. Phys. 2010, 229, 4544–4553. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Eddin, M.B.; Vardaxis, N.G.; Ménard, S.; Hagberg, D.B.; Kouyoumji, J.L. Prediction of Sound Insulation Using Artificial Neural Networks–Part II: Lightweight Wooden Façade Structures. Appl. Sci. 2022, 12, 6983. [Google Scholar] [CrossRef]
- Araujo, G.; Andrade, F.A.A. Post-Processing Air Temperature Weather Forecast Using Artificial Neural Networks with Measurements from Meteorological Stations. Appl. Sci. 2022, 12, 7131. [Google Scholar] [CrossRef]
- Joh, Y.D.; Kwon, Y.M.; Huh, J.Y.; Park, W.K. Structure analysis of single- and multi-frequency subspace migrations in the inverse scattering problems. Prog. Electromagn. Res. 2013, 136, 607–622. [Google Scholar] [CrossRef]
- Joh, Y.D.; Park, W.K. Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks. Prog. Electromagn. Res. 2013, 138, 211–226. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-S.; Park, W.-K.; Joh, Y.-D. Construction of Full-View Data from Limited-View Data Using Artificial Neural Network in the Inverse Scattering Problem. Appl. Sci. 2022, 12, 9801. https://doi.org/10.3390/app12199801
Jeong S-S, Park W-K, Joh Y-D. Construction of Full-View Data from Limited-View Data Using Artificial Neural Network in the Inverse Scattering Problem. Applied Sciences. 2022; 12(19):9801. https://doi.org/10.3390/app12199801
Chicago/Turabian StyleJeong, Sang-Su, Won-Kwang Park, and Young-Deuk Joh. 2022. "Construction of Full-View Data from Limited-View Data Using Artificial Neural Network in the Inverse Scattering Problem" Applied Sciences 12, no. 19: 9801. https://doi.org/10.3390/app12199801
APA StyleJeong, S. -S., Park, W. -K., & Joh, Y. -D. (2022). Construction of Full-View Data from Limited-View Data Using Artificial Neural Network in the Inverse Scattering Problem. Applied Sciences, 12(19), 9801. https://doi.org/10.3390/app12199801