Anisotropy and Directivity Effects on Uniaxial Compression of Carbonaceous Slate Form Jinman Mine
Abstract
:1. Introduction
2. Methods
2.1. Sample Preparation
2.2. Experimental Apparatus
2.3. Experimental Procedure
3. Results and Discussion
3.1. Effect of Rock Structure on Stress-Strain Curves
3.2. Loading Effect of Mechanical Parameters
3.2.1. Effect of Slate Structure on Peak Strength
3.2.2. Effect of Slate Structure on Elastic Modulus
3.2.3. Characteristics of Mechanical Parameters
3.3. Acoustic Emission Response Characteristics
3.4. Failure Characteristics
3.4.1. Macro-Fracture Mode Characteristics
3.4.2. Micro-Cracks and Fracture Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.; He, M.C.; Zhang, X.H.; Tao, Z.G.; Yin, Q.; Li, L.F. Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior. Rock Soil Mech. 2021, 42, 1911–1924. [Google Scholar] [CrossRef]
- Zhu, C.; He, M.C.; Jiang, B.; Qin, X.Z.; Yin, Q.; Zhou, Y. Numerical investigation on the fatigue failure characteristics of water-bearing sandstone under cyclic loading. J. Mt. Sci. 2021, 18, 3348–3365. [Google Scholar] [CrossRef]
- Wu, K.; Shao, Z.; Qin, S.; Zhao, N.N.; Chu, Z. An improved non-linear creep model for rock applied to tunnel displacement prediction. Int. J. Appl. Mech. 2021, 13, 2150094. [Google Scholar] [CrossRef]
- Wu, K.; Shao, Z.; Qin, S.; Wei, W.; Chu, Z.F. A critical review on the performance of yielding supports in squeezing tunnels. Tunn. Undergr. Space Technol. 2021, 115, 103815. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Z.P.; Yang, T.T.; Han, J.J.; Wang, B.W.; Zhang, Z.K. Investigating the aging damage evolution characteristics of layered hard sandstone using digital image correlation. Constr. Build. Mater. 2022, 335, 128838. [Google Scholar] [CrossRef]
- Wu, K.; Shao, Z.S.; Sharifzadeh, M.; Chu, Z.F.; Qin, S. Analytical approach to estimating the influence of shotcrete hardening property on tunnel response. J. Eng. Mech. 2022, 148, 4021127. [Google Scholar] [CrossRef]
- Wu, K.; Shao, Z.; Sharifzadeh, M.; Hong, S.; Qin, S. Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design. J. Rock Mech. Geotech. Eng. 2022, 14, 144–152. [Google Scholar] [CrossRef]
- Zhou, G.N.; Yang, T.T.; Sun, Z.; Li, H.; Cheng, Y.; Song, Z.P.; Han, J.J. Investigation of quantitative evaluation method and engineering application of shallow buried tunnel face stability. Appl. Sci. 2022, 12, 6656. [Google Scholar] [CrossRef]
- Yang, L.F.; Shi, K.X.; Wang, C.M.; Wu, B.; Du, B.; Chen, J.Y.; Xia, J.S.; Chen, J. Ore genesis of the Jinman copper deposit in the Lanping Basin, Sanjiang Orogen: Constraints by copper and sulfur isotopes. Acta Petrol. Sin. 2016, 32, 2392–2406. [Google Scholar]
- Tian, X.X.; Song, Z.P.; Zhang, Y.W. Monitoring and reinforcement of landslide induced by tunnel excavation: A case study from Xiamaixi tunnel. Tunn. Undergr. Space Technol. 2020, 110, 103796. [Google Scholar] [CrossRef]
- Tian, X.X.; Song, Z.P.; Wang, H.Z.; Zhang, Y.W.; Wang, J.B. Evolution characteristics of the surrounding rock pressure and construction techniques: A case study from Taoshuping tunnel. Tunn. Undergr. Space Technol. 2022, 125, 104522. [Google Scholar] [CrossRef]
- Vervoort, A.; Min, K.B.; Konietzky, H.; Cho, J.W.; Debecker, B.; Dinh, Q.D.; Frühwirt, T.; Tavallali, A. Failure of transersely isotropic rock under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 2014, 70, 343–352. [Google Scholar] [CrossRef]
- Dan, D.Q.; Konietzky, H. Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2014, 7, 53–63. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, C.H.; Wang, H.; Guo, Y.T.; Xu, F.; Hou, Z.K. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression. Rock Soil Mech. 2018, 39, 2106–2114. [Google Scholar] [CrossRef]
- Wang, C.C.; Li, J.T.; Lin, H.; Liao, J.; Wang, P.X.; Wang, S.Q. Anisotropic mechanical characteristics of slate in uniaxial compression. J. Cent. South Univ. 2016, 47, 3759–3764. [Google Scholar] [CrossRef]
- Li, Z.G.; Xu, G.L.; Huang, P.; Zhao, X.; Fu, Y.P. Mechanical and anisotropic properties of silty slates. Rock Soil Mech. 2018, 39, 1737–1746. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Wang, Y.; Liu, D.Q.; Li, C.H. Investigation of the anisotropic mechanical behaviors and energy evolution during uniaxial deformation of interbedded marble. J. Min. Saf. Eng. 2019, 36, 794–804. [Google Scholar] [CrossRef]
- Fan, X.; Kulatilake, P.H.S.W.; Chen, X.; Cao, P. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach. J. Cent. South Univ. 2015, 22, 638–645. [Google Scholar] [CrossRef]
- Akbarimehr, D.; Eslami, A.; Aflaki, E. Geotechnical behaviour of clay soil mixed with rubber waste. J. Clean. Prod. 2020, 271, 122632. [Google Scholar] [CrossRef]
- Fan, S.Y.; Song, Z.P.; Zhang, Y.W.; Liu, N.F. Case study of the effect of rainfall infiltration on a tunnel underlying the roadbed slope with weak inter-layer. KSCE J. Civ. Eng. 2020, 24, 1607–1619. [Google Scholar] [CrossRef]
- Fan, S.Y.; Song, Z.P.; Xu, T.; Wang, K.M.; Zhang, Y.W. Tunnel deformation and stress response under the bilateral foundation pit construction—A case study. Arch. Civ. Mech. Eng. 2021, 109, 109. [Google Scholar] [CrossRef]
- Li, G.T.; Qiao, D.P.; Yu, X.B.; Wang, J. Experimental investigation on the tensile deformation as a result of the brazilian test for the rocks of Dahongshan copper mine. J. Saf. Environ. 2017, 17, 463–467. [Google Scholar] [CrossRef]
- Song, B.; Cao, Y. Stability criterion of surrounding rock in roadway under blasting vibration load based on wavelet energy. Rock Soil Mech. 2013, 34, 234–240. [Google Scholar] [CrossRef]
- Song, Z.P.; Cheng, Y.; Tian, X.X.; Wang, J.B.; Yang, T.T. Mechanical properties of limestone from Maixi tunnel under hydro-mechanical coupling. Arab. J. Geosci. 2020, 13, 402. [Google Scholar] [CrossRef]
- Song, Z.P.; Cheng, Y.; Yang, T.T.; Huo, R.K.; Wang, J.B.; Liu, X.R.; Zhou, G.N. Analysis of compression failure and acoustic emission characteristics of limestone under permeability-stress coupling. Rock Soil Mech. 2019, 44, 2751–2759. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y.; Tian, S.M. Analysis of deformation control mechanism of prestressed anchor on jointed soft rock in large cross-section tunnel. Bull. Eng. Geol. Environ. 2021, 80, 9089–9103. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, F.; Feng, D.C.; Ma, H.Y.; Feng, X. Experimental investigation on strain rate effects of saturated clay subjected to freeze-thaw cycles. Rock Soil Mech. 2017, 38, 2007–2014. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Z.P.; Huo, R.K.; Yang, T.T.; Wang, J.B. Study on the effect of pore-water pressure on Felicity effect of acoustic emission in limestone under graded cyclic loading. J. Basic Sci. Eng. 2022, 30, 361–373. [Google Scholar] [CrossRef]
- Wang, Y.P.; Liu, X.J.; Liang, L.X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale. Lithol. Reserv. 2018, 30, 149–160. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Z.P.; Jin, J.F.; Wang, T.; Yang, T.T. Waveform characterisation and energy dissipation of stress wave based on modified SHPB tests. Geomech. Eng. 2020, 22, 187–196. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Z.P.; Chang, X.X.; Wang, T. Energy evolution principles of shock-wave in sandstone under unloading stress. KSCE J. Civ. Eng. 2020, 24, 2912–2922. [Google Scholar] [CrossRef]
- Gao, M.Z.; Xie, J.; Gao, Y.N.; Wang, W.Y.; Li, C.; Yang, B.G.; Liu, J.J.; Xie, H.P. Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing. Int. J. Min. Sci. Technol. 2021, 31, 825–841. [Google Scholar] [CrossRef]
- Gao, M.Z.; Hao, H.C.; Xue, S.N.; Lu, T.; Cui, P.F.; Gao, Y.N.; Xie, J.; Yang, B.G.; Xie, H.P. Discing behavior and mechanism of cores extracted from Songke-2 well at depths below 4500 m. Int. J. Min. Sci. Technol. 2022, 149, 104976. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Z.P.; Song, W.X.; Li, S.G.; Yang, T.T.; Zhang, Z.K.; Wang, T.; Wang, K.S. Strain performance and fracture response characteristics of hard rock under cyclic loading. Geomech. Eng. 2021, 26, 551–563. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, S.X.; Zhang, X.Y.; Liu, R.C.; Zhuang, C.; Wang, J.G.; Zhou, Z.F. Influence of shear displacement on fluid flow and solute transport in a 3D rough fracture. Lithosphere-US 2021, 2021, 1569736. [Google Scholar] [CrossRef]
- Chai, B.; Tong, J.; Jiang, B.; Yin, K.L. How does the water-rock interaction of marly rocks affect its mechanical properties in the Three Gorges reservoir area, China. Environ. Earth Sci. 2014, 72, 2797–2810. [Google Scholar] [CrossRef]
- Chen, D.H.; Chen, H.E.; Zhang, W.; Lou, J.Q.; Shan, B. An analytical solution of equivalent elastic modulus considering confining stress and its variables sensitivity analysis for fractured rock masses. J. Rock Mech. Geotech. Eng. 2021, 14, 825–836. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yan, E.C.; Liu, Y.X.; Wang, Z.J. Anisotropic properties of deformation parameters and its mechanism of Wudang group schist. Rock Soil Mech. 2015, 35, 1317–1322+1328. [Google Scholar]
- Liu, N.F.; Li, N.; Xu, C.B.; Li, G.F.; Song, Z.P.; Yang, M. Mechanism of secondary lining cracking and its simulation for the dugongling tunnel. Rock Mech. Rock Eng. 2020, 53, 4539–4558. [Google Scholar] [CrossRef]
- Liu, N.F.; Li, N.; Li, G.F.; Song, Z.P.; Wang, S.J. Method for evaluating the equivalent thermal conductivity of a freezing rock mass containing systematic fractures. Rock Mech. Rock Eng. 2022, 2022, 1–23. [Google Scholar] [CrossRef]
Sample | σc/MPa | σcd/MPa | E/MPa | εzz × 10−3 | εyy × 10−3 | εv × 10−3 |
---|---|---|---|---|---|---|
No. 1 Gray sample | 63.27 | 50.26 | 35.11 | 1.802 | −0.290 | 1.222 |
No. 2 Gray sample | 61.63 | 49.63 | 43.01 | 1.433 | −0.561 | 3.110 |
No. 3 Gray sample | 45.02 | 39.02 | 36.39 | 1.237 | −0.254 | 0.727 |
No. 4 Gray sample | 63.45 | 51.45 | 41.35 | 2.972 | −0.517 | 1.938 |
Average | 58.34 | 47.59 | 38.97 | 1.861 | −0.406 | 1.749 |
No. 1 Cinerous sample | 22.41 | 19.41 | 32.02 | 1.365 | −0.114 | 1.137 |
No. 2 Cinerous sample | 53.93 | 30.77 | 32.49 | 2.047 | −0.169 | 0.609 |
No. 3 Cinerous sample | 70.19 | 68.19 | 64.34 | 1.091 | −0.204 | 0.683 |
No. 4 Cinerous sample | 69.17 | 57.55 | 38.06 | 1.373 | −0.930 | 0.487 |
Average | 53.93 | 43.98 | 41.72 | 1.469 | −0.354 | 0.927 |
Sample | σc/MPa | σcd/MPa | E/MPa | εzz × 10−4 | εxx × 10−3 | εyy × 10−3 | εv × 10−3 |
---|---|---|---|---|---|---|---|
No. 1 Gray sample | 53.26 | 39.03 | 40.55 | 3.27 | −0.061 | −0.886 | −0.620 |
No. 2 Gray sample | 55.43 | 43.56 | 88.55 | 6.26 | −0.570 | −2.691 | −2.635 |
No. 3 Gray sample | 47.95 | 28.99 | 54.70 | 5.11 | −0.623 | −2.879 | −2.991 |
No. 4 Gray sample | 34.15 | 29.52 | 41.14 | 5.78 | −0.071 | −0.670 | −0.163 |
Average | 47.70 | 35.28 | 56.24 | 5.11 | −0.331 | −1.782 | −1.602 |
No. 1 Cinerous sample | 54.88 | 48.89 | 41.11 | 1.44 | −0.035 | −3.507 | −3.398 |
No. 2 Cinerous sample | 28.92 | 23.73 | 62.08 | 1.50 | −0.087 | −3.182 | −3.119 |
No. 3 Cinerous sample | 50.52 | 46.38 | 78.28 | 1.58 | −0.020 | −1.892 | −1.854 |
No. 4 Cinerous sample | 12.98 | 8.64 | 50.62 | 1.29 | −0.015 | −1.254 | −1.140 |
Average | 36.83 | 31.91 | 58.02 | 1.45 | −0.039 | −2.459 | −2.378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cheng, Y.; Song, Z.; Ye, X. Anisotropy and Directivity Effects on Uniaxial Compression of Carbonaceous Slate Form Jinman Mine. Appl. Sci. 2022, 12, 9811. https://doi.org/10.3390/app12199811
Zhang Z, Cheng Y, Song Z, Ye X. Anisotropy and Directivity Effects on Uniaxial Compression of Carbonaceous Slate Form Jinman Mine. Applied Sciences. 2022; 12(19):9811. https://doi.org/10.3390/app12199811
Chicago/Turabian StyleZhang, Zhixiong, Yun Cheng, Zhanping Song, and Xueyun Ye. 2022. "Anisotropy and Directivity Effects on Uniaxial Compression of Carbonaceous Slate Form Jinman Mine" Applied Sciences 12, no. 19: 9811. https://doi.org/10.3390/app12199811
APA StyleZhang, Z., Cheng, Y., Song, Z., & Ye, X. (2022). Anisotropy and Directivity Effects on Uniaxial Compression of Carbonaceous Slate Form Jinman Mine. Applied Sciences, 12(19), 9811. https://doi.org/10.3390/app12199811