Verification of Fuel Consumption and Carbon Dioxide Emissions under Sulfur Restriction Policy during Oceanographic Navigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Container Ship Description
2.2. Estimation for FO Consumption and CO2 Emissions
3. Results and Discussion
3.1. Description Analysis for Both Fuel Options
3.2. Fuel Consumptions and CO2 Emissions for Both Fuel Options
3.3. Advantages and Weaknesses of Both Fuel Options
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ytreberg, E.; Astrom, S.; Fridell, E. Valuating Environmental Impacts from Ship Emissions–The Marine Perspective. J. Environ. Manag. 2021, 282, 111958. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Liu, D.T.; Wang, X.T.; Li, S.Y.; Zhang, J.L.; Qiu, H.; Ding, S.; Hu, K.; Li, W.J.; Tian, P.; et al. Ambient Marine Shipping Emissions Determined by Vessel Operation Mode Along the East China Sea. Sci. Total Environ. 2021, 769, 144713. [Google Scholar] [CrossRef] [PubMed]
- Aalbu, K.; Longva, T. From Progress to Delay: The Quest for Data in the Negotiations on Greenhouse Gases in the International Maritime Organization. Glob. Environ. Politics 2022, 22, 136–155. [Google Scholar] [CrossRef]
- De Oliveira, M.A.N.; Szklo, A.; Branco, D.A.C. Implementation of Maritime Transport Mitigation Measures According to their Marginal Abatement Costs and their Mitigation Potentials. Energy Policy 2022, 160, 112699. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Andrew, R.M.; Canadell, J.G.; Crippa, M.; Dobbeling, N.; Forster, P.M.; Guizzardi, D.; Olivier, J.; Peters, G.P.; et al. A Comprehensive and Synthetic Dataset for Global, Regional, and National Greenhouse Gas Emissions by Sector 1970-2018 with an Extension to 2019. Earth Syst. Sci. Data 2021, 13, 5213–5252. [Google Scholar] [CrossRef]
- Singh, M.; Leena, G. Forecasting of GHG Emission and Linear Pinch Analysis of Municipal Solid Waste for the City of Faridabad, India. Energy Sources Part. A Recovery Util. Environ. Eff. 2019, 41, 2704–2714. [Google Scholar] [CrossRef]
- Wada, Y.; Yamamura, T.; Hamada, K.; Wanaka, S. Evaluation of GHG Emission Measures Based on Shipping and Shipbuilding Market Forecasting. Sustainability 2021, 13, 2760. [Google Scholar] [CrossRef]
- Lindstad, E.; Lagemann, B.; Rialland, A.; Gamlem, G.M.; Valland, A. Reduction of Maritime GHG Emissions and the Potential Role of E-fuels. Transp. Res. Part. D-Transp. Environ. 2021, 101, 103075. [Google Scholar] [CrossRef]
- Serra, P.; Fancello, G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Ben-Hakoun, E.; Van De Voorde, E.; Shiftan, Y. Marine Environmental Emission Reduction Policy in the Liner Shipping the Economic Impact from Trade Lane Perspective. Marit. Policy Manag. 2021, 48, 725–753. [Google Scholar] [CrossRef]
- Peng, D.X. Tribological and Emission Characteristics of Indirect Ignition Diesel Engine Fuelled with Waste Edible Oil. Ind. Lubr. Tribol. 2016, 68, 554–560. [Google Scholar] [CrossRef]
- Narayan, S.; Moravec, D.B.; Hauser, B.G.; Dallas, A.J.; Dutcher, C.S. Removing Water from Diesel Fuel: Understanding the Impact of Droplet Size on Dynamic Interfacial Tension of Water-in-Fuel Emulsions. Energy Fuels 2018, 32, 7326–7337. [Google Scholar] [CrossRef]
- Norouzi, S.; Hazeri, K.; Wyszynski, M.L.; Tsolakis, A. Investigation on the Effects of Temperature, Dissolved Oxygen and Water on Corrosion Behaviour of Aluminium and Copper Exposed to Diesel-Type Liquid Fuels. Fuel Process. Technol. 2014, 128, 220–231. [Google Scholar] [CrossRef]
- Yeh, C.K.; Lin, C.; Shen, H.C.; Cheruiyot, N.K.; Nguyen, D.H.; Chang, C.C. Real–Time Energy Consumption and Air Pollution Emission During the Transpacific Crossing of a Container Ship. Sci. Rep. 2022, 12, 15272. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Q.; Xu, Z.P.; Chen, J.H.; Wang, Q. Impact of Emission Control Areas on Atmospheric Pollutant Emissions from Major Ocean-Going Ships Entering the Shanghai Port, China. Mar. Pollut. Bull. 2019, 142, 525–532. [Google Scholar] [CrossRef]
- Schierloh, K.; Braun, M.; Bendels, M.H.K. Exhaust Emission from Ocean-Going Vessels. Zent. Arb. Arb. Ergon. 2020, 70, 140–144. [Google Scholar] [CrossRef]
- International Maritime Organization. IMO 2020–Cutting Sulphur Oxide Emissions. 2020. Available online: http://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx (accessed on 7 September 2022).
- Kontovas, C.A. Integration of Air Quality and Climate Change Policies in Shipping: The Case of Sulphur Emissions Regulati on. Mar. Policy 2020, 113, 103815. [Google Scholar] [CrossRef]
- Alphaliner: LNG/Scrubber Watch–Fleet Breakdown & Carrier Breakdown. Available online: https://publicalphalinercom/wp-content/uploads/2022/01/Alphaliner_MM_Jul_21pdf (accessed on 7 September 2022).
- Khan, N. Our Final Warning: Intergovernmental Panel on Climate Change and Primary Care. Br. J. Gen. Pract. 2022, 72, 271. [Google Scholar] [CrossRef]
- Cavanagh, R.D.; Melbourne-Thomas, J.; Grant, S.M.; Barnes, D.K.A.; Hughes, K.A.; Halfter, S.; Meredith, M.P.; Murphy, E.J.; Trebilco, R.; Hill, S.L. Future Risk for Southern Ocean Ecosystem Services Under Climate Change. Front. Mar. Sci. 2021, 7, 615214. [Google Scholar] [CrossRef]
- Tee, Y.H.; Barros, D.C.; Longmire, E.K. Motion of Finite–Size Spheres Released in a Turbulent Boundary Layer. Int. J. Multiph. Flow 2020, 133, 103462. [Google Scholar] [CrossRef]
- Dujmovic, J.; Bernecic, D. Deviations and Errors Review on Measuring and Calculating Heavy Fuel Oil Consumption and Fuel Stock Onboard Vessels Equipped with Volumetric Fuel Consumption Flowmeters. Pomor. Sci. J. Marit. Res. 2021, 35, 297–307. [Google Scholar] [CrossRef]
- Al-Sakkari, E.G.; Attia, N.K.; Habashy, M.M.; Abdeldayem, O.M.; Mostafa, S.R.; El-Sheltawy, S.T.; Abadir, M.F.; Mostafa, M.K.; Rene, E.R.; Elnashaie, S. A Bi–Functional Alginate–Based Composite for Catalyzing One–Pot Methyl Esters Synthesis from Waste Cooking Oil Having High Acidity. Fuel 2021, 306, 121637. [Google Scholar] [CrossRef]
- Oh, S.; Choi, I.G.; Choi, J.W. Pretreatment of Bio–Oil with Ion Exchange Resin to Improve Fuel Quality and Reduce Char During Hydrodeoxygenation Upgrading with Pt/C. Environ. Technol. 2021, 42, 1132–1144. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Hajialirezaei, A.H.; Soltani, M.; Nathwani, J. Thermodynamic Analysis of In–Situ Hydrogen from Hot Compressed Water for Heavy Oil Upgrading. Int. J. Hydrog. Energy 2019, 44, 27671–27684. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Soltani, M.; Nathwani, J. Renewable Energy Integration with Hot Compressed Water in Heavy Oil Upgrading: A Practice Toward Sustainability. J. Clean. Prod. 2022, 334, 130268. [Google Scholar] [CrossRef]
- Bashan, V.; Demirel, H.; Celik, E. Evaluation of Critical Problems of Heavy Fuel Oil Separators on Ships by Best–Worst Method. Proc. Inst. Mech. Eng. Part. M-J. Eng. Marit. Environ. 2022, 236, 868–876. [Google Scholar] [CrossRef]
- Vervalle, G. Stability and Compatibility of VLSFOs. Available online: https://wwwameydemarinecom/stability-and-compatibility-of-vlsfos/ (accessed on 7 September 2021).
- Vedachalam, S.; Baquerizo, N.; Dalai, A.K. Review on Impacts of Low Sulfur Regulations on Marine Fuels and Compliance Options. Fuel 2022, 310, 122243. [Google Scholar] [CrossRef]
- Kass, M.; Kaul, B.; Armstrong, B.; Szybist, J.; Lobodin, V. Stability, Rheological and Combustion Properties of Biodiesel Blends with a Very–Low Sulfur Fuel Oil (VLSFO). Fuel 2022, 316, 123365. [Google Scholar] [CrossRef]
Effective Date | Global Area Fuel Sulfur Limits | Emission Control Areas (ECAs) Fuel Sulfur Limit |
---|---|---|
19 May 2005 | <4.5% m/m | <1.5% m/m, Baltic Sea region and North Sea Region |
1 January 2010 | <1.0% m/m, Baltic Sea region and North Sea Region | |
1 January 2012 | <3.5% m/m | 1 August 2012, With North America included |
1 January 2014 | With US Caribbean included | |
1 January 2015 | <0.1% m/m, including the Baltic Sea, the North Sea, North America, and the Caribbean | |
1 January 2020 | <0.5% m/m | |
1 March 2020 | <3.5% m/m + desulfurization |
Item | Description | Unit |
---|---|---|
Launched date | 2013 | - |
Length | 334.8 | Meter |
Breadth | 45.8 | Meter |
Draft design | 13.5 | Meter |
Capacity | 8000 above | TEU |
Main engine | MAN B&W 9K98ME Mark 7.1 | - |
MCR: 56~80% (77~88 RPM) | ||
NCR: 50,463 kW and shaft speed 93.7 RPM | ||
Gross tonnage | 99,998 | Tonnage |
Service speed | 24.5 | knot |
Voyage Route | Measurement | M (HFOWD) | M (VLSFO) | t | p |
---|---|---|---|---|---|
Asia to C.A. | Main engine output power (%) | 59.37 | 58.54 | 0.368 | 0.715 |
Specific gravity of fuel after heating (mt/m3) | 0.94 | 0.933 | 4.795 | 0.000 | |
Lower heating value (LHV) (kcal/kg) | 10,210 | 10,294 | −4.807 | 0.000 | |
Main engine fuel consumption (ton/day) | 131.63 | 142.32 | −1.837 | 0.074 | |
Main engine CO2 emission (ton/day) | 435.18 | 474.8 | −2.084 | 0.044 | |
C.A. to Asia | Main engine output power (%) | 53.7 | 54.3 | −0.287 | 0.776 |
Specific gravity of fuel after heating (mt/m3) | 0.943 | 0.933 | 6.438 | 0.000 | |
Lower heating value (LHV) (kcal/kg) | 10,180 | 10,287 | −6.418 | 0.000 | |
Main engine fuel consumption (ton/day) | 128.05 | 140.09 | −2.223 | 0.031 | |
Main engine CO2 emission (ton/day) | 421.98 | 467.019 | −2.564 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.-C.; Tzu, F.-M.; Lin, C.; Yeh, C.-K.; Huang, W.-Y.; Pu, H.-P.; Chang, S.-H. Verification of Fuel Consumption and Carbon Dioxide Emissions under Sulfur Restriction Policy during Oceanographic Navigation. Appl. Sci. 2022, 12, 9857. https://doi.org/10.3390/app12199857
Shen H-C, Tzu F-M, Lin C, Yeh C-K, Huang W-Y, Pu H-P, Chang S-H. Verification of Fuel Consumption and Carbon Dioxide Emissions under Sulfur Restriction Policy during Oceanographic Navigation. Applied Sciences. 2022; 12(19):9857. https://doi.org/10.3390/app12199857
Chicago/Turabian StyleShen, Hsueh-Chen, Fu-Ming Tzu, Chitsan Lin, Chin-Ko Yeh, Wen-Yen Huang, Han-Pin Pu, and Shun-Hsyung Chang. 2022. "Verification of Fuel Consumption and Carbon Dioxide Emissions under Sulfur Restriction Policy during Oceanographic Navigation" Applied Sciences 12, no. 19: 9857. https://doi.org/10.3390/app12199857
APA StyleShen, H. -C., Tzu, F. -M., Lin, C., Yeh, C. -K., Huang, W. -Y., Pu, H. -P., & Chang, S. -H. (2022). Verification of Fuel Consumption and Carbon Dioxide Emissions under Sulfur Restriction Policy during Oceanographic Navigation. Applied Sciences, 12(19), 9857. https://doi.org/10.3390/app12199857