Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks
Abstract
:1. Introduction
2. Classical Physical Model for the Hydrogen Isotopic Ratio Determination
3. Some Notions on Machine Learning and Deep Learning
4. Application of Machine Learning to Spectroscopic Features of Hα/Dα Line Profiles
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keilhacker, M.; Watkins, M.L.; JET Team. D-T experiments in the JET tokamak. J. Nucl. Mater. 1999, 266–269, 1–13. [Google Scholar] [CrossRef]
- Kim, H.; Sips, A.C.C.; Challis, C.D.; Keeling, D.; King, D.; Joffrin, E.; Szepesi, G.; Buchanan, J.; Horton, L.D.; Yuan, X.; et al. 1997 JET DT experiments revisited—comparative analysis of DD and DT stationary baseline discharges. Nucl. Fusion 2020, 60, 066003. [Google Scholar] [CrossRef]
- Mailloux, J.; Abid, N.; Abraham, K.; Abreu, P.; Adabonyan, O.; Adrich, P.; Afanasev, V.; Afzal, M.; Ahlgren, T.; Aho-Mantila, L.; et al. Overview of JET results for optimizing ITER operation. Nucl. Fusion 2022, 62, 042026. [Google Scholar] [CrossRef]
- Roth, J.; Tsitrone, E.; Loarer, T.; Philipps, V.; Brezinsek, S.; Loarte, A.; Counsell, G.F.; Doerner, R.P.; Schmid, K.; Ogorodnikova, O.V.; et al. Tritium inventory in ITER plasma-facing materials and tritium removal procedures. Plasma Phys. Control. Fusion 2008, 50, 103001. [Google Scholar] [CrossRef]
- Drenik, A.; Alegre, D.; Brezinsek, S.; de Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; et al. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG. Phys. Scr. 2017, 2017, 014021. [Google Scholar] [CrossRef] [Green Version]
- Klepper, C.C.; Hillis, D.L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pégourié, B. Residual gas analysis for long-pulse, advanced tokamak operation. Rev. Sci. Instrum. 2010, 81, 10E104. [Google Scholar] [CrossRef]
- Kubo, H.; Takenaga, H.; Sugie, T.; Higashijima, S.; Suzuki, S.; Sakasai, A.; Hosogane, N. The spectral profile of the Hα line emitted from the divertor region of JT-60U. Plasma Phys. Control Fusion 2014, 56, 025010. [Google Scholar]
- Koubiti, M.; Marandet, Y.; Escarguel, A.; Capes, H.; Godbert-Mouret, L.; Stamm, R.; De Michelis, C.; Guirlet, R.; Mattioli, M. Analysis of asymmetric Dα spectra emitted in front of a neutralizer plate of the Tore-Supra ergodic divertor. Plasma Phys. Control Fusion 2002, 44, 261. [Google Scholar] [CrossRef]
- Hey, J.; Chu, C.C.; Mertens, P.; Brezinsek, S.; Unterberg, B. Atomic collision processes with ions at the edge of magnetically confined fusion plasmas. J. Phys. B 2004, 37, 2543. [Google Scholar] [CrossRef]
- Koubiti, M.; Sheeba, R.S. Spectral modeling of hydrogen radiation emission in magnetic fusion devices. Atoms 2019, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Neverov, V.S.; Kukushkin, A.B.; Stamp, M.F.; Alkseev, A.G.; Brezinsek, S.; von Hellermann, M.; JET Contributors. Determination of diverter stray light in high-resolution main chamber Hα spectroscopy on JET-ILW. Nucl. Fusion 2017, 57, 016031. [Google Scholar] [CrossRef] [Green Version]
- Neverov, V.S.; Kukushkin, A.B.; Kruezi, U.; Stamp, M.F.; Weisen, H.; JET Contributors. Determination of isotope ratio in the divertor of JET-ILW by high-resolution Hα spectroscopy: H-D experiment and implications for D-T experiment. Nucl. Fusion 2019, 59, 04601. [Google Scholar] [CrossRef]
- Kajita, S.; Nishijima, D.; Fujii, K.; Akkermans, G.; van der Maiden, H. Application of multiple regression for sensitivity analysis of helium line emissions to the electron density and temperature in Magnum-PSI. Plasma Phys. Control Fusion 2021, 63, 055018. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Sickit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825. [Google Scholar]
- Kajita, S.; Akkermans, G.; Fujii, K.; van der Maiden, H.; van de Sanden, M.C.M. Emission spectroscopy of He lines in high-density plasmas in Magnum-PSI. AIP Adv. 2020, 10, 025225. [Google Scholar] [CrossRef]
- Nishijima, D.; Kajita, S.; Tynan, G.R. Machine learning predictions of electron density and temperature from He I line ratios. Rev. Sci. Instrum. 2021, 92, 023505. [Google Scholar] [CrossRef]
- Gurung-López, S.; Gronke, M.; Saito, S.; Bonoli, S.; Orsi, A.A. zELDA: Fitting Lyman alpha line profiles using deep learning. Mon. Not. R. Astron. Soc. 2022, 510, 4525. [Google Scholar] [CrossRef]
- Cianciosa, M.; Law, K.J.H.; Martin, E.H.; Green, D.L. Machine learning for analysis of atomic spectral data. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106671. [Google Scholar] [CrossRef]
- MacBride, C.D.; Jess, D.B.; Grant, S.D.T.; Khomenko, E.; Keys, P.H.; Stangalini, M. Accurately constraining velocity information from spectral imaging observations using machine learning techniques. Phil. Trans. R. Soc. A. 2021, 379, 20200171. [Google Scholar] [CrossRef]
- Ren, T.; Modest, M.F.; Fateev, A.; Sutton, G.; Zhao, W.; Rusu, F. Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements. Appl. Energy 2019, 252, 113448. [Google Scholar] [CrossRef] [Green Version]
- Samuell, C.M.; Mclean, A.G.; Johnson, C.A.; Glass, F.; Jaervinen, A.E. Measuring the electron temperature and identifying plasma detachment using machine learning and spectroscopy. Rev. Sci. Instrum. 2021, 92, 043520. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.H.; Ramsey, A.T.; Johnson, D.W.; Diesso, M. Tritium Diagnostics by Balmer-Alpha Emission; Princeton University: Princeton, NJ, USA, 1993; PPPL Report PPPL-2878. Available online: https://www.osti.gov/servlets/purl/6748245 (accessed on 15 August 2022). [CrossRef] [Green Version]
- Skinner, C.H.; Stotler, D.P.; Adler, H.; Ramsey, A.T. Spectroscopic diagnostics of tritium recycling in TFTR. Rev. Sci. Instrum. 1995, 66, 646. [Google Scholar] [CrossRef] [Green Version]
- TensorFlow. Available online: https://www.tensorflow.org/guide (accessed on 15 August 2022).
- Keras Optimizers (ADAM optimizer). Available online: https://keras.io/api/optimizers/adam/ (accessed on 15 August 2022).
- Keras Python API for Machine-Learning Platform TensorFlow. Available online: https://keras.io/ (accessed on 15 August 2022).
- Sickit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 15 August 2022).
Parameters | Known Values | Inferred Values | Errors |
---|---|---|---|
2 eV; 55% | 2.015 eV; 54.998% | 0.744%; 0.0042% | |
15 eV; 45% | 15.111 eV; 45.002% | 0.742%; 0.0051% | |
B | 2 T | 2.091 T | 4.56% |
5% | 5.0007% | 0.01308% | |
95% | 94.9993% | 0.00068% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koubiti, M.; Kerebel, M. Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Appl. Sci. 2022, 12, 9891. https://doi.org/10.3390/app12199891
Koubiti M, Kerebel M. Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Applied Sciences. 2022; 12(19):9891. https://doi.org/10.3390/app12199891
Chicago/Turabian StyleKoubiti, Mohammed, and Malo Kerebel. 2022. "Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks" Applied Sciences 12, no. 19: 9891. https://doi.org/10.3390/app12199891
APA StyleKoubiti, M., & Kerebel, M. (2022). Application of Deep Learning to Spectroscopic Features of the Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Applied Sciences, 12(19), 9891. https://doi.org/10.3390/app12199891