Evidence of Volatility Metals and Metalloids at Environment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Methods for Analyzing the Composition of the Waste Material
2.3. Methods for the Analysis of Condensates and Aqueous Extracts from Waste Materials
2.4. Method of Analyzing the Gas Composition of the Air above the Sample Surface
3. Results
3.1. Mine Tailings Sample Composition
3.2. Air Composition
3.3. Condensate Composition
3.4. Composition of the Gas Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landázuri, A.; Betterton, E.A.; Sáez, A.E. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, K.; Hanks, P. Word association norms, mutual information, and lexicography. Comput. Linguist. 1990, 16, 22–29. [Google Scholar]
- Rasmussen, E.N.; Blanchard, D.O. A baseline climatology of sounding-derived supercell andtornado forecast parameters. Weather. Forecast. 1998, 13, 1148–1164. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- US Environmental Protection Agency. Compendium Method TO-16: Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases; US Environmental Protection Agency: Research Triangle Park, NC, USA, 1999.
- Beamer, P.I.; Sugeng, A.J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ. Sci. Process. Impacts 2014, 16, 1275–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ene, A.; Popescu, I.V.; Stihi, C.; Gheboianu, A.; Pantelica, A.; Petre, C. PIXE analysis of multielemental samples. Rom. J. Phys. 2010, 55, 806–814. [Google Scholar]
- Corriveau, M.C.; Jamieson, H.E.; Parsons, M.B.; Campbell, J.L.; Lanzirotti, A. Direct characterization of airborne particles associated with arsenic-rich mine tailings: Particle size, mineralogy and texture. Appl. Geochem. 2011, 26, 1639–1648. [Google Scholar] [CrossRef]
- Marple, V.A.; Rubow, K.L.; Behm, S.M. A microorifice uniform deposit impactor (MOUDI): Description, calibration, and use. Aerosol. Sci. Technol. 1991, 14, 434–446. [Google Scholar] [CrossRef]
- Csavina, J.; Landázuri, A.; Wonaschütz, A.; Rine, K.; Rheinheimer, P.; Barbaris, B.; Conant, W.; Sáez, A.E.; Betterton, E.A. Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water Air Soil Pollut. 2011, 221, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Corona Sánchez, J.E.; González Chávez, M.D.C.A.; Carrillo González, R.; Scheckel, K.; Tapia Maruri, D.; García Cue, J.L. Metal (loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. Environ. Sci. Pollut. Res. 2021, 28, 19458–19472. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Engling, G.; Zhang, R.; Yang, Y.; Cao, J.; Zhu, C.; Wang, Q.; Luo, L. Chemical composition of PM2. 5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013, 122, 270–283. [Google Scholar] [CrossRef]
- Kumari, M.; Saroha, A.K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. J. Environ. Manag. 2018, 228, 169–188. [Google Scholar]
- Csavina, J.; Field, J.; Félix, O.; Corral-Avitia, A.Y.; Sáez, A.E.; Betterton, E.A. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci. Total Environ. 2014, 487, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Rodas, D.; de la Campa, A.M.S.; Alsioufi, L. Analytical approaches for arsenic determination in air: A critical review. Anal. Chim. Acta 2015, 898, 1–18. [Google Scholar] [CrossRef]
- González-Castanedo, Y.; Moreno, T.; Fernández-Camacho, R.; de la Campa, A.M.S.; Alastuey, A.; Querol, X.; de la Rosa, J. Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmos. Environ. 2014, 98, 271–282. [Google Scholar] [CrossRef]
- Mpanza, M.; Adam, E.; Moolla, R. Dust deposition impacts at a liquidated gold mine village: Gauteng province in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 4929. [Google Scholar] [CrossRef]
- Guney, M.S.; Tepe, Y. Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Ettler, V.; Štěpánek, D.; Mihaljevič, M.; Drahota, P.; Jedlicka, R.; Kříbek, B.; Vaněk, A.; Penížek, V.; Sracek, O.; Nyambe, I. Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere 2020, 260, 127642. [Google Scholar] [CrossRef] [PubMed]
- Dudu, H.; Çakmak, E.H. Climate change and agriculture: An integrated approach to evaluate economy-wide effects for Turkey. Clim. Dev. 2018, 10, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Mwaanga, P.; Silondwa, M.; Kasali, G.; Banda, P.M. Preliminary review of mine air pollution in Zambia. Heliyon 2019, 5, e02485. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-Sam, N.; Kabalo, A.N.; Ntapisha, J.; Mizukawa, H.; Umemura, T.; Ishizuka, M. Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia. Chemosphere 2018, 202, 48–55. [Google Scholar] [CrossRef]
- Hirner, A.V.; Feldmann, J.; Krupp, E.; Gruemping, R.; Goguel, R.; Cullen, W.R. Metal (loid) organic compounds in geothermal gases and waters. Org. Geochem. 1998, 29, 1765–1778. [Google Scholar] [CrossRef]
- Feldmann, J. Volatile Metal Compounds of Biogenic Origin. In Handbook of Elemental Speciation II–Species in the Environment, Food, Medicine and Occupational Health; John Wiley & Sons Ltd.: London, UK, 2005; p. 598. [Google Scholar]
- Feldmann, J. Determination of Ni (CO) 4, Fe (CO) 5, Mo (CO) 6, and W (CO) 6 in sewage gas by using cryotrapping gas chromatography inductively coupled plasma mass spectrometry. J. Environ. Monit. 1999, 1, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, J.; Cullen, W.R. Occurrence of volatile transition metal compounds in landfill gas: Synthesis of molybdenum and tungsten carbonyls in the environment. Environ. Sci. Technol. 1997, 31, 2125–2129. [Google Scholar] [CrossRef]
- Bortnikova, S.B.; Silantyeva, N.V.; Zapolsky, A.N.; Yurkevich, N.V.; Saeva, O.P.; Shevko, A.Y.; Shuvaeva, O.V.; Edelev, A.V. Assessment of acid base accounting of mine waste rocks and mobility of potentially toxic elements of the Razdolinsky ore field (Krasnoyarsk Territory). In Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering; Tomsk Polytechnic University: Tomsk, Russia, 2018; Volume 329, no. 12; pp. 55–72. (In Russian) [Google Scholar]
- Bortnikova, S.; Yurkevich, N.; Devyatova, A.; Saeva, O.; Shuvaeva, O.; Makas, A.; Troshkov, M.; Abrosimova, N.; Kirillov, M.; Korneeva, T.; et al. Mechanisms of low-temperature vapor-gas streams formation from sulfide mine waste. Sci. Total Environ. 2019, 647, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Makas, A.L.; Troshkov, M.L. Field gas chromatography–mass spectrometry for fast analysis. J. Chromatogr. B 2004, 800, 55–61. [Google Scholar] [CrossRef]
- Yurkevich, N.; Bortnikova, S.; Abrosimova, N.; Makas, A.; Olenchenko, V.; Yurkevich, N.; Edelev, A.; Saeva, O.; Shevko, A. Sulfur and nitrogen gases in the vapor streams from ore cyanidation wastes at a sharply continental climate, Western Siberia, Russia. Water Air Soil Pollut. 2019, 230, 1–17. [Google Scholar] [CrossRef]
- Salthammer, T. Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air 2016, 26, 25–38. [Google Scholar] [CrossRef]
- Platonov, I.A.; Rodinkov, O.V.; Gorbacheva, A.R.; Moskvin, L.N.; Kolesnichenko, I.N. Method for preparing standard gas mixtures and a device for its implementation. J. Anal. Chem. 2011, 72, 2410678. [Google Scholar]
Components | MDL | MLOQ | Elements | MDL | MLOQ |
---|---|---|---|---|---|
SO42− | 0.10 | 0.30 | Pb | 0.05 | 0.17 |
Cl− | 0.10 | 0.30 | Cd | 0.04 | 0.13 |
PO43− | 0.10 | 0.30 | Ag | 0.05 | 0.17 |
HCOO− (formate) | 0.10 | 0.30 | Co | 0.05 | 0.17 |
Ca | 0.05 | 0.17 | Ni | 0.14 | 0.47 |
Mg | 0.01 | 0.03 | As | 0.05 | 0.17 |
Na | 0.01 | 0.03 | Sb | 0.05 | 0.17 |
K | 0.01 | 0.03 | Se | 0.20 | 0.67 |
Fe | 0.50 | 1.7 | Ba | 0.03 | 0.10 |
Mn | 0.08 | 0.27 | Sr | 0.01 | 0.03 |
Al | 0.11 | 0.37 | Ti | 0.04 | 0.13 |
Zn | 0.15 | 0.50 | V | 0.04 | 0.13 |
Cu | 0.22 | 0.73 | Li | 0.11 | 0.37 |
Components | Content | Elements | Content |
---|---|---|---|
SiO2 | 25 | Cu | 290 |
TiO2 | 0.52 | Zn | 540 |
Al2O3 | 0.72 | Pb | 1800 |
Fe2O3 | 22 | Cd | 0.36 |
MnO | 0.004 | Co | 4.2 |
MgO | 0.012 | As | 650 |
CaO | 0.24 | Sb | 220 |
Na2O | 0.18 | Se | 140 |
K2O | 0.44 | Ag | 22 |
P2O5 | 0.031 | Rb | 4.5 |
BaO | 16 | Sr | 210 |
LOI | 6.6 | Ti | 730 |
Ssulfate | 3.2 | V | 6.5 |
Ssulfide | 24 | Li | 4.5 |
Element | Content | Element | Content |
---|---|---|---|
pH | 2.7 | Pb | 0.43 |
Eh | 670 | Cd | 2.3 |
SO42− | 2600 | Ag | 0.81 |
Cl− | 100 | Co | 6.2 |
PO43− | 0.92 | Ni | 18 |
Ca | 84 | As | 1700 |
Mg | 4.2 | Sb | 12 |
Na | 1.5 | Se | 280 |
K | 0.57 | Ba | 71 |
Fe | 530 | Sr | 110 |
Mn | 0.13 | Ti | 85 |
Al | 12 | V | 22 |
Zn | 0.20 | Li | 15 |
Cu | 0.62 |
Components | Content | Elements | Content |
---|---|---|---|
SO42− | 12 | Pb | 45 |
Cl− | 2.4 | Cd | 11 |
PO43− | 0.35 | Ag | 0.10 |
HCOO− (formate) | 0.55 | Co | 0.4 |
Ca | 4.3 | Ni | 17 |
Mg | 1.2 | As | 4.5 |
Na | 1.8 | Sb | 3.6 |
K | 1.6 | Se | 9.9 |
Fe | 25 | Ba | 15 |
Mn | 6.0 | Sr | 31 |
Al | 15 | Ti | 0.30 |
Zn | 235 | V | 0.06 |
Cu | 44 | Li | 3.1 |
Compound | Formula | Concentration, mkg/m3 | |
---|---|---|---|
Without Purging | Purge | ||
Carbon disulfide | CS2 | 100 | 12 |
Dimethyl sulfide | C2H6S | 1.5 | traces |
Carbo selenide | CSSe | 24 | 0.35 |
Dimethyl selenide | C2H6Se | 140 | 0.62 |
Disulfide, dimethyl | C2H6S2 | 1.6 | traces |
Dimethyl thioselenide | C2H6SSe | traces | - |
Thiocyanic acid, methyl ester | C2H3NS | 3.8 | - |
Dimethyl diselenide | C2H6Se2 | traces | - |
Dimethyl trisulfide | C2H6S3 | 0.7 | - |
S6, S7, S8 | 0.5 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bortnikova, S.B.; Yurkevich, N.V.; Volynkin, S.S.; Kozlov, A.S.; Makas, A.L. Evidence of Volatility Metals and Metalloids at Environment Conditions. Appl. Sci. 2022, 12, 9942. https://doi.org/10.3390/app12199942
Bortnikova SB, Yurkevich NV, Volynkin SS, Kozlov AS, Makas AL. Evidence of Volatility Metals and Metalloids at Environment Conditions. Applied Sciences. 2022; 12(19):9942. https://doi.org/10.3390/app12199942
Chicago/Turabian StyleBortnikova, Svetlana B., Nataliya V. Yurkevich, Sergey S. Volynkin, Aleksander S. Kozlov, and Alexey L. Makas. 2022. "Evidence of Volatility Metals and Metalloids at Environment Conditions" Applied Sciences 12, no. 19: 9942. https://doi.org/10.3390/app12199942
APA StyleBortnikova, S. B., Yurkevich, N. V., Volynkin, S. S., Kozlov, A. S., & Makas, A. L. (2022). Evidence of Volatility Metals and Metalloids at Environment Conditions. Applied Sciences, 12(19), 9942. https://doi.org/10.3390/app12199942