A New Method to Determine the Steel Fibre Content of Existing Structures—Test Setup and Numerical Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concrete Mix Design
2.2. Experimental Setup
2.3. Modelling of Current Flow
2.4. Evaluation of the Results
3. Results and Discussion
3.1. Validation of the Test Setup
3.1.1. Impact of the Frequency of the Alternating Current
3.1.2. Electrode Array with Angular Distances of 180°
3.1.3. Electrode Array with Angular Distances of 90°
3.1.4. Evaluation of the Electrode Arrays
3.2. Estimation of the Fibre Content
3.3. Estimation of the Fibre Orientation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Electrode A | Electrode B | K-Value | ||
---|---|---|---|---|
Height Level | Angle | Height Level | Angle | |
all | 0° | all | 180° | 0.073252 |
1 | 0° | 1 | 180° | 0.026695 |
3 | 0° | 3 | 180° | |
2 | 0° | 2 | 180° | 0.026986 |
1 | all | 2 | all | 0.051199 |
2 | all | 3 | all | |
1 | all | 3 | all | 0.036845 |
1 | 0° | 2 | 0° | 0.027577 |
1 | 180° | 2 | 180° | |
2 | 0° | 3 | 0° | |
2 | 180° | 3 | 180° | |
1 | 0° | 3 | 0° | 0.021785 |
1 | 180° | 3 | 180° |
Electrode A | Electrode B | K-Value | ||
---|---|---|---|---|
Height Level | Angle | Height Level | Angle | |
all | 0° | all | 180° | 0.072101 |
all | 90° | all | 270° | |
1 | 0° | 1 | 180° | 0.026855 |
1 | 90° | 1 | 270° | |
3 | 0° | 3 | 180° | |
3 | 90° | 3 | 270° | |
2 | 0° | 2 | 180° | 0.027489 |
2 | 90° | 2 | 270° | |
1 | all | 2 | all | 0.086723 |
2 | all | 3 | all | |
1 | all | 3 | all | 0.054244 |
1 | 0° | 2 | 0° | 0.027987 |
1 | 90° | 2 | 90° | |
1 | 180° | 2 | 180° | |
1 | 270° | 2 | 270° | |
2 | 0° | 3 | 0° | |
2 | 90° | 3 | 90° | |
2 | 180° | 3 | 180° | |
2 | 270° | 3 | 270° | |
1 | 0° | 3 | 0° | 0.021898 |
1 | 90° | 3 | 90° | |
1 | 180° | 3 | 180° | |
1 | 270° | 3 | 270° |
References
- Gouri Mohan, L.; Nazeer, M.; Nizad, A.; Suresh, S. Fibre reinforced concrete—A state-of-the-art review. Int. J. Earth Sci. Eng. 2010, 3, 634–642. [Google Scholar]
- Kobaka, J.; Katzer, J.; Ponikiewski, T.A. Combined electromagnetic induction and radar-based test for quality control of steel fibre reinforced concrete. Materials 2019, 12, 3507. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Zhang, C.; Sun, C.; Zheng, X.; Ji, Y.; Yuan, X. Experimental investigation on the freeze–thaw resistance of steel fibers reinforced rubber concrete. Materials 2020, 13, 1260. [Google Scholar] [CrossRef] [Green Version]
- Rossi, B.; Wolf, S. Steel fibre reinforced concrete for the future of tunnel lining segments—A durable solution. In Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art, Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress, Naples, Italy, 3–9 May 2019; CRC Press: Boca Raton, FL, USA, 2019; pp. 2978–2985. [Google Scholar] [CrossRef]
- Woo, L.Y.; Wansom, S.; Ozyurt, N.; Mu, B.; Shah, S.P.; Mason, T.O. Characterizing fiber dispersion in cement composites using AC-Impedance Spectroscopy. Cem. Concr. Compos. 2005, 27, 627–636. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.; Chen, Y.; Shi, Y.; Ling, Y. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles. Materials 2019, 12, 2184. [Google Scholar] [CrossRef] [Green Version]
- Gettu, R.; Gardner, D.R.; Saldívar, H.; Barragán, B.E. Study of the distribution and orientation of fibers in SFRC specimens. Mater. Struct. Mater. Constr. 2005, 38, 31–37. [Google Scholar] [CrossRef]
- Martinelli, P.; Colombo, M.; Pujadas, P.; De la Fuente, A.; Cavalaro, S.; Di Prisco, M. Characterization tests for predicting the mechanical performance of SFRC floors: Identification of fibre distribution and orientation effects. Mater. Struct. 2021, 54, 3. [Google Scholar] [CrossRef]
- Barnett, S.J.; Lataste, J.; Parry, T.; Millard, S.G.; Soutsos, M.N. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater. Struct. 2010, 43, 1009–1023. [Google Scholar] [CrossRef]
- Zak, G.; Park, C.B.; Benhabib, B. Estimation of Three-Dimensional Fibre-Orientation Distribution in Short-Fibre Composites by a Two-Section Method. J. Compos. Mater. 2000, 35, 316–339. [Google Scholar] [CrossRef]
- Plizzari, G.A. Fiber reinforced concrete for repairing and strengthening RC structures: Some recent advancements. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 199, p. 01004. [Google Scholar] [CrossRef]
- Cugat, V.; Cavalaro, S.H.P.; Bairán, J.M.; de la Fuente, A. Safety format for the flexural design of tunnel fibre reinforced concrete precast segmental linings. Tunn. Undergr. Space Technol. 2020, 103, 103500. [Google Scholar] [CrossRef]
- Herrmann, H.; Boris, R.; Goidyk, O.; Braunbrück, A. Variation of bending strength of fiber reinforced concrete beams due to fiber distribution and orientation and analysis of microstructure. IOP Conf. Series: Mater. Sci. Eng. 2019, 660, 012059. [Google Scholar] [CrossRef]
- Molins, C.; Aguado, A.; Saludes, S. Double Punch Test to control the energy dissipation in tension of FRC (Barcelona test). Mater. Struct. 2008, 42, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Tarawneh, A.; Almasabha, G.; Alawadi, R.; Tarawneh, M. Innovative and reliable model for shear strength of steel fibers reinforced concrete beams. Structures 2021, 32, 1015–1025. [Google Scholar] [CrossRef]
- Komárková, T. Design of Methodology for Non-Destructive Testing of Steel-Reinforced-Fiber-Concrete. Key Eng. Mater. 2016, 714, 179–185. [Google Scholar] [CrossRef]
- Li, L.; Xia, J.; Chin, C.; Jones, S. Fibre distribution characterization of ultra-high performance fibre-reinforced concrete (uhpfrc) plates using magnetic probes. Materials 2020, 13, 5064. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, X.; Akiyama, M.; Zhang, M.; Xin, J.; Lim, S. Modelling method of fibre distribution in steel fibre reinforced concrete based on X-ray image recognition. Compos. Part B Eng. 2021, 223, 109124. [Google Scholar] [CrossRef]
- Woo, L.Y.; Kidner, N.J.; Wansom, S.; Mason, T.O. Combined Time Domain Reflectometry and AC-Impedance Spectroscopy of Fiber-Reinforced Fresh-Cement Composites. Cem. Concr. Res. 2007, 37, 89–95. [Google Scholar] [CrossRef]
- Balázs, G.L.; Czoboly, O.; Lublóy, É.; Kapitány, K.; Barsi, Á. Observation of steel fibres in concrete with computed tomography. Constr. Build. Mater. 2017, 140, 534–541. [Google Scholar] [CrossRef]
- Ferrara, L.; Faifer, M.; Toscani, S. A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—Part 1: Method calibration. Mater. Struct. 2012, 45, 575–589. [Google Scholar] [CrossRef]
- Lee, S.; Oh, J.; Cho, J. Fiber orientation factor on rectangular cross-section in concrete members. Int. J. Eng. Technol. 2015, 7, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Mattarneh, A.H. Electromagnetic quality control of steel fiber concrete. Constr. Build. Mater. 2014, 73, 350–356. [Google Scholar] [CrossRef]
- Park, T.; Her, S.; Jee, H.; Yoon, S.; Cho, B.; Hwang, S.; Bae, S. Evaluation of orientation and distribution of steel fibers in high-performance concrete column determined via micro-computed tomography. Constr. Build. Mater. 2014, 73, 350–356. [Google Scholar] [CrossRef]
- Ponikiewski, T.; Katzer, J. X-ray computed tomography of fibre reinforced self-compacting concrete as a tool of assessing its flexural behaviour. Mater. Struct. Mater. Constr. 2016, 49, 2131–2140. [Google Scholar] [CrossRef] [Green Version]
- Torrents, J.M.; Blanco, A.; Pujadas, P.; Aguado, A.; Juan-García, P.; Sánchez-Moragues, M.Á. Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater. Struct. 2012, 45, 1577–1592. [Google Scholar] [CrossRef] [Green Version]
- Ozyurt, N.; Woo, L.Y.; Mason, T.O.; Shah, S.P. Monitoring Fiber Dispersion in Fiber-Reinforced Cementitious Materials: Comparison of AC-Impedance Spectroscopy and Image Analysis. ACI Mater. J. 2006, 103, 340–347. [Google Scholar]
- Raupach, M.; Gulikers, J.; Reichling, K. Condition survey with embedded sensors regarding reinforcement corrosion. Mater. Corros. 2013, 64, 141–146. [Google Scholar] [CrossRef]
- Reichling, K.; Raupach, M. Measurement and visualisation of the actual concrete resistivity in consideration of conductive layers and reinforcement bars. In Concrete Repair, Rehabilitation and Retrofitting III, Proceedings of the 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, Cape Town, South Africa, 3–5 September 2012; Taylor Francis Group: Abingdon, UK, 2012; pp. 707–714. [Google Scholar]
- Reichling, K. Bestimmung und Bewertung des Elektrischen Widerstands von Beton Mit Geophysikalischen Verfahren. Ph.D. Thesis, Technische Hochschule, Aachen, Germany, 2014. [Google Scholar]
- Reichling, K.; Raupach, M.; Klitzsch, N. Determination of the distribution of electrical resistivity in reinforced concrete structures using electrical resistivity tomography. Mater. Corros. 2015, 66, 763–771. [Google Scholar] [CrossRef]
- Ruan, T.; Poursaee, A. Fiber-distribution assessment in steel fiber-reinforced UHPC using conventional imaging, X-ray CT scan, and concrete electrical conductivity. J. Mater. Civ. Eng. 2019, 31, 04019133. [Google Scholar] [CrossRef]
- Cleven, S.; Raupach, M.; Matschei, T. Electrical Resistivity of Steel Fibre-Reinforced Concrete—Influencing Parameters. Materials 2021, 14, 3408. [Google Scholar] [CrossRef] [PubMed]
- Cleven, S.; Raupach, M.; Matschei, T. A New Method to Determine the Steel Fibre Content of Existing Structures—Evaluation and Validation. Appl. Sci. 2022, 12, 454. [Google Scholar] [CrossRef]
- EN 206:2013+A1:2016; DIN EN 206:2017-01; Concrete-Specification, Performance, Production and Conformity; German Version. Beuth Publishing DIN: Berlin, Germany, 2017. [CrossRef]
- EN 12350-5:2019; DIN EN 12350-5:2019-09; Testing Fresh Concrete—Part 5: Flow Table Test; German Version. Beuth Publishing DIN: Berlin, Germany, 2019. [CrossRef]
- EN 12350-6:2019; DIN EN 12350-6:2019-09; Testing Fresh Concrete—Part 6: Density; German Version. Beuth Publishing DIN: Berlin, Germany, 2019. [CrossRef]
- EN 12350-7:2019; DIN EN 12350-7:2019-09; Testing Fresh Concrete—Part 7: Air Content—Pressure Methods; German Version. Beuth Publishing DIN: Berlin, Germany, 2019. [CrossRef]
- Chen, B.; Wu, K.; Yao, W. Conductivity of carbon fiber reinforced cement-based composites. Cem. Concr. Compos. 2004, 26, 291–297. [Google Scholar] [CrossRef]
- Hedjazi, S.; Castillo, D. Effect of fibre types on the electrical properties of fibre reinforced concrete. Mater. Express 2020, 10, 733–739. [Google Scholar] [CrossRef]
- Lataste, J.F.; Behloul, M.; Breysse, D. Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT E Int. 2008, 41, 638–647. [Google Scholar] [CrossRef]
- Daniel, J.I.; Gopalaratnam, V.S.; Galinat, M.A.; Ahmad, A.H.; Hoff, G.C.; Arockiasamy, M.; Jindal, R.L.; Shah, S.P.; Balaguru, P.N. Report on Fiber Reinforced Concrete. Reported by ACI Committee 544; ACI544.1R-96; American Concrete Institute: Indianapolis, IN, USA, 2001. [Google Scholar]
- Gjørv, O.E.; Øystein, V.; El-Busaidy, A.H.S. Electrical resistivity of concrete in the oceans. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 1977; Volume 2, pp. 581–588. [Google Scholar] [CrossRef]
- Liu, Y.; Presuel-Moreno, F. Effect of elevated temperature curing on compressive strength and electrical resistivity of concrete with fly ash and ground-granulated blast-furnace slag. ACI Mater. J. 2014, 111, 531–542. [Google Scholar]
- Spragg, R.; Jones, S.; Bu, Y.; Lu, Y.; Bentz, D.; Snyder, K.; Weiss, J. Leaching of conductive species: Implications to measurements of electrical resistivity. Cem. Concr. Compos. 2017, 79, 94–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, C. Model for prediction of reinforced concrete service life based on electrical resistivity. IBRACON Mater. J. 2005, 1, 1–5. [Google Scholar]
- Bürchler, D. Der Elektrische Widerstand von Zementösen Werkstoffen. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1996. [Google Scholar] [CrossRef]
Parameter | Unit | 32–60–300–00 |
---|---|---|
CEM I 32.5 R | kg/m3 | 300.0 |
Water | kg/m3 | 180.0 |
Aggregates | kg/m3 | 1849.5 |
Water/cement ratio | - | 0.60 |
Grain size distribution | - | A/B16 |
Steel fibre type | - | Macrofibre 60 mm |
Steel fibre content | kg/m3 | 0, 40, 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cleven, S.; Raupach, M.; Matschei, T. A New Method to Determine the Steel Fibre Content of Existing Structures—Test Setup and Numerical Simulation. Appl. Sci. 2022, 12, 561. https://doi.org/10.3390/app12020561
Cleven S, Raupach M, Matschei T. A New Method to Determine the Steel Fibre Content of Existing Structures—Test Setup and Numerical Simulation. Applied Sciences. 2022; 12(2):561. https://doi.org/10.3390/app12020561
Chicago/Turabian StyleCleven, Simon, Michael Raupach, and Thomas Matschei. 2022. "A New Method to Determine the Steel Fibre Content of Existing Structures—Test Setup and Numerical Simulation" Applied Sciences 12, no. 2: 561. https://doi.org/10.3390/app12020561
APA StyleCleven, S., Raupach, M., & Matschei, T. (2022). A New Method to Determine the Steel Fibre Content of Existing Structures—Test Setup and Numerical Simulation. Applied Sciences, 12(2), 561. https://doi.org/10.3390/app12020561