Response of the Earth’s Lower Ionosphere to Solar Flares and Lightning-Induced Electron Precipitation Events by Analysis of VLF Signals: Similarities and Differences
Abstract
:1. Introduction
2. Methods
Used Numerical Model
3. Results
3.1. Lower Ionosphere during SF Event
3.2. Signal Propagation Parameters during LEP Event
3.3. Modelling and Simulation during LEP Event
3.4. Analysis of the LEP Event
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: Oxford, UK, 2009. [Google Scholar]
- Rycroft, M.J. Electrical processes coupling the atmosphere and ionosphere: An overview. J. Atmos. Sol. Terr. Phys. 2006, 68, 445–456. [Google Scholar] [CrossRef]
- Kourtidis, K.; André, K.S.; Karagioras, A.; Nita, I.-A.; Sátori, G.; Bór, J.; Kastelis, N. The influence of circulation weather types on the exposure of the biosphere to atmospheric electric fields. Int. J. Biometeorol. 2021, 65, 93–105. [Google Scholar] [CrossRef]
- Cummer, S.A.; Inan, U.S. Ionospheric E region remote sensing with ELF radio atmospherics. Radio Sci. 2000, 35, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, A.J.; Hajj, G.A.; Iijima, B.A.; Komjathy, A.; Meehan, T.K.; Pi, X.Q.; Srinivasan, J.; Tsurutani, B.T.; Wilson, B.; Zhang, L.D. GPS-based remote sensing of the geospace environment: Horizontal and vertical structure of the ionosphere and plasmasphere. In Proceedings of the Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, Honolulu, HI, USA, 30 December 2004; pp. 1–13. [Google Scholar]
- Goodman, J.M. Space Weather & Telecommunications; Springer: New York, NY, USA, 2005; Volume 382. [Google Scholar]
- Tandberg-Hanssen, E.; Emslie, A.G. The Physics of Solar Flares; Cambridge University Press: Cambridge, UK, 1988; Volume 14. [Google Scholar]
- Berényi, K.; Barta, V.; Kis, Á. Midlatitude ionospheric F2-layer response to eruptive solar events-caused geomagnetic disturbances over Hungary during the maximum of the solar cycle 24: A case study. Adv. Space Res. 2018, 61, 1230–1243. [Google Scholar] [CrossRef] [Green Version]
- Šulić, D.; Srećković, V.; Mihajlov, A. A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions. Adv. Space Res. 2016, 57, 1029–1043. [Google Scholar] [CrossRef] [Green Version]
- Šulić, D.; Srećković, V. A comparative study of measured amplitude and phase perturbations of VLF and LF radio signals induced by solar flares. Serb. Astron. J. 2014, 188, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Reid, G.C. Ion chemistry in the D region; Academic Press: Cambridge, MA, USA, 1976; Volume 12, pp. 375–413. [Google Scholar]
- Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; Volume 32. [Google Scholar]
- Nicolet, M.; Aikin, A. The formation of the D region of the ionosphere. J. Geophys. Res. 1960, 65, 1469–1483. [Google Scholar] [CrossRef]
- Nunn, D. On the numerical modelling of the VLF Trimpi effect. J. Atmos. Sol. Terr. Phys. 1997, 59, 537–560. [Google Scholar] [CrossRef] [Green Version]
- Helliwell, R.; Katsufrakis, J.; Trimpi, M. Whistler-Induced Amplitude Perturbations in VLF Propagation. J. Geophys. Res. 1973, 78, 4679–4688. [Google Scholar] [CrossRef]
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Stanford University Press Stanford: Palo Alto, CA, USA, 1965; Volume 50. [Google Scholar]
- Strangeways, H. Lightning, Trimpis and Sprites; Oxford University Press: Oxford, UK, 1996; Volume 1993, pp. 741–780. [Google Scholar]
- Silber, I.; Price, C. On the use of VLF narrowband measurements to study the lower ionosphere and the mesosphere–lower thermosphere. Surv. Geophys. 2017, 38, 407–441. [Google Scholar] [CrossRef] [Green Version]
- Trichtchenko, L.; Zhukov, A.; Van der Linden, R.; Stankov, S.; Jakowski, N.; Stanisławska, I.; Juchnikowski, G.; Wilkinson, P.; Patterson, G.; Thomson, A. November 2004 space weather events: Real-time observations and forecasts. Space Weather 2007, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rodger, C.J. Subionospheric VLF perturbations associated with lightning discharges. J. Atmos. Sol. Terr. Phys. 2003, 65, 591–606. [Google Scholar] [CrossRef]
- Belenkiy, M.; Orlov, A.; Petrova, G.; Uvarov, A. Modeling of the electron density profile of the lower ionosphere (45–75 km) for sudden ionospheric disturbance conditions based on the data on sudden phase anomalies of VLF signals. Int. J. Geomag. Aeron. 2006, 6, GI3007. [Google Scholar] [CrossRef]
- McKinnell, L.-A.; Friedrich, M. A neural network-based ionospheric model for the auroral zone. J. Atmos. Sol. Terr. Phys. 2007, 69, 1459–1470. [Google Scholar] [CrossRef]
- Žigman, V.; Grubor, D.; Šulić, D. D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Sol. Terr. Phys. 2007, 69, 775–792. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Pal, S.; Sasmal, S.; Mondal, S.; Ray, S.; Basak, T.; Maji, S.; Khadka, B.; Bhowmick, D.; Chowdhury, A. VLF campaign during the total eclipse of July 22nd, 2009: Observational results and interpretations. J. Atmos. Sol. Terr. Phys. 2012, 86, 65–70. [Google Scholar] [CrossRef]
- Thomson, N.R.; Rodger, C.J.; Clilverd, M.A. Daytime D region parameters from long-path VLF phase and amplitude. J. Geophys. Res. 2011, 116, 1–12. [Google Scholar]
- McRae, W.M.; Thomson, N.R. VLF phase and amplitude: Daytime ionospheric parameters. J. Atmos. Sol. Terr. Phys. 2000, 62, 609–618. [Google Scholar] [CrossRef]
- McRae, W.M.; Thomson, N.R. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations. J. Atmos. Sol. Terr. Phys. 2004, 66, 77–87. [Google Scholar] [CrossRef]
- Thomson, N.R.; Rodger, C.J.; Clilverd, M.A. Large solar flares and their ionospheric D region enhancements. J. Geophys. Res. 2005, 110, 1–10. [Google Scholar]
- Thomson, N.R.; Clilverd, M.A.; McRae, W.M. Nighttime ionospheric D region parameters from VLF phase and amplitude. J. Geophys. Res. 2007, 112, 1–14. [Google Scholar]
- Basak, T.; Chakrabarti, S.K. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares. Astrophys. Space. Sci. 2013, 348, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Budden, K. Radio Waves in the Ionosphere; Cambridge Univ. Press: Cambridge, UK, 1961. [Google Scholar]
- Budden, K.G. The Wave-Guide Mode Theory of Wave Propagation; Logos Press: London, UK, 1961. [Google Scholar]
- Wait, J.R. Electromagnetic Waves in Stratified Media; Pergamon Press: Oxford, UK, 1970; Volume 3. [Google Scholar]
- Mitra, A.P. Ionospheric Effects of Solar Flares; Springer: Berlin/Heidelberg, The Netherlands, 1974; Volume 46. [Google Scholar]
- Balan, N.; Alleyne, H.; Walker, S.; Reme, H.; McCrea, I.; Aylward, A. Magnetosphere–ionosphere coupling during the CME events of 07–12 November 2004. J. Atmos. Sol. Terr. Phys. 2008, 70, 2101–2111. [Google Scholar] [CrossRef]
- Inan, U.S.; Lehtinen, N.G.; Moore, R.; Hurley, K.; Boggs, S.; Smith, D.; Fishman, G. Massive disturbance of the daytime lower ionosphere by the giant γ-ray flare from magnetar SGR 1806–20. Geophys. Res. Lett. 2007, 34, 8103–8108. [Google Scholar] [CrossRef] [Green Version]
- Žigman, V.; Kudela, K.; Grubor, D. Response of the Earth’s lower ionosphere to the ground level enhancement event of December 13, 2006. Adv. Space Res. 2014, 53, 763–775. [Google Scholar] [CrossRef]
- Srećković, V.A.; Šulić, D.M.; Ignjatović, L.; Vujčić, V. Low Ionosphere under Influence of Strong Solar Radiation: Diagnostics and Modeling. Appl.Sci. 2021, 11, 7194. [Google Scholar] [CrossRef]
- Nina, A.; Srećković, V.; Radovanović, M. Multidisciplinarity in research of extreme solar energy influences on natural disasters. Sustainability 2019, 11, 974. [Google Scholar] [CrossRef] [Green Version]
- Cannon, P.; Angling, M.; Barclay, L.; Curry, C.; Dyer, C.; Edwards, R.; Greene, G.; Hapgood, M.; Horne, R.B.; Jackson, D. Extreme Space Weather: Impacts on Engineered Systems and Infrastructure; Royal Academy of Engineering: Carlton House Terrace, London, 2013. [Google Scholar]
- McMorrow, D. Impacts of Severe Space Weather on the Electric Grid; JASON: McLean, VA, USA, 2011; pp. 22102–27508. [Google Scholar]
- Kolarski, A.; Grubor, D. Sensing the Earth’s low ionosphere during solar flares using VLF signals and goes solar X-ray data. Adv. Space Res. 2014, 53, 1595–1602. [Google Scholar] [CrossRef] [Green Version]
- Kolarski, A.; Grubor, D. Comparative analysis of VLF signal variation along trajectory induced by X-ray solar flares. J. Astrophys. Astr. 2015, 36, 565–579. [Google Scholar] [CrossRef]
- Kolarski, A.; Grubor, D.; Šulić, D. Diagnostics Of The Solar X-Flare Impact On Lower Ionosphere Through The Vlf-Naa Signal Recordings. Open Astron. 2011, 20, 591–595. [Google Scholar] [CrossRef]
- Nina, A.; Čadež, V.; Srećković, V.; Šulić, D. The influence of solar spectral lines on electron concentration in terrestrial ionosphere. Open Astron. 2011, 20, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Nina, A.; Čadež, V.; Srećković, V.; Šulić, D. Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux. Nucl. Instrum. Meth. B 2012, 279, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Nina, A.; Čadež, V.; Šulić, D.; Srećković, V.; Žigman, V. Effective electron recombination coefficient in ionospheric D-region during the relaxation regime after solar flare from 18 February 2011. Nucl. Instrum. Meth. B 2012, 279, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Šulić, D.; Nina, A.; Srećković, V. Numerical Simulations Of The Effect Of Localised Ionospheric Perturbations On Subionospheric VLF Propagation. arXiv 2014, arXiv:1405.3783. [Google Scholar]
- Nina, A.; Čadež, V.M.; Popović, L.Č.; Srećković, V.A. Diagnostics of plasma in the ionospheric D-region: Detection and study of different ionospheric disturbance types. Eur. Phys. J. D 2017, 71, 189. [Google Scholar] [CrossRef] [Green Version]
- Nina, A.; Simić, S.; Srećković, V.A.; Popović, L.Č. Detection of short-term response of the low ionosphere on gamma ray bursts. Geophys. Res. Lett. 2015, 42, 8250–8261. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J. Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0: User’s Guide and Source Files; Space and Naval Warfare Systems Center: San Diego, CA, USA, 1998. [Google Scholar]
- Gavrilov, B.; Ermak, V.; Lyakhov, A.; Poklad, Y.V.; Rybakov, V.; Ryakhovsky, I. Reconstruction of the Parameters of the Lower Midlatitude Ionosphere in M-and X-Class Solar Flares. Geomagn. Aeron. 2020, 60, 747–753. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Solar flare effects on D-region ionosphere using VLF measurements during low-and high-solar activity phases of solar cycle 24. Earth Planets Space 2018, 70, 29. [Google Scholar] [CrossRef]
- Kerrache, F.; Nait Amor, S.; Kumar, S. Ionospheric D region disturbances due to FAC and LEP associated with three severe Geomagnetic Storms as observed by VLF Signals. J. Geophys. Res. 2021, 126, e2020JA027838. [Google Scholar] [CrossRef]
- Šulić, D.; Žigman, V.; Nina, A. Study of the observed amplitude and phase perturbations on VLF signals from lighting induced electron precipitation and reconstruction of D-region electron density height profile. In Proceedings of the 4rd VERSIM Workshop 2010, Prague, Czech Republic, 13–17 September 2010. [Google Scholar]
- Wait, J.R.; Spies, K.P. Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves; US Department of Commerce, National Bureau of Standards: Boulder, CO, USA, 1964; Volume 13. [Google Scholar]
- Clilverd, M.A.; Nunn, D.; Lev-Tov, S.J.; Inan, U.S.; Dowden, R.L.; Rodger, C.J.; Smith, A.J. Determining the size of lightning-induced electron precipitation patches. J. Geophys. Res. 2002, 107, SIA 10–SIA 11. [Google Scholar] [CrossRef]
- Bainbridge, G.; Inan, U.S. Ionospheric D region electron density profiles derived from the measured interference pattern of VLF waveguide modes. Radio Sci. 2003, 38, 16-11–16-21. [Google Scholar] [CrossRef]
- Palit, S.; Basak, T.; Mondal, S.; Pal, S.; Chakrabarti, S. Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry. Atmos. Chem. Phys. 2013, 13, 9159–9168. [Google Scholar] [CrossRef] [Green Version]
- Grubor, D.; Šulić, D.; Žigman, V. Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile. Ann. Geophys. 2008, 26, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Nina, A.; Čadež, V.M. Electron production by solar Ly-α line radiation in the ionospheric D-region. Adv. Space Res. 2014, 54, 1276–1284. [Google Scholar] [CrossRef] [Green Version]
- Bouderba, Y.; NaitAmor, S.; Tribeche, M. Study of the solar flares effect on VLF radio signal propagating along NRK-ALG path using LWPC code. J. Geophys. Res. 2016, 121, 6799–6807. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Han, B.; Gao, F.; Zhang, T.; Zhao, Z. Analysis of Global Ionospheric Response to Solar Flares Based on Total Electron Content and Very Low Frequency Signals. IEEE Access 2021, 9, 57618–57631. [Google Scholar] [CrossRef]
- Barta, V.; Haldoupis, C.; Sátori, G.; Buresova, D.; Chum, J.; Pozoga, M.; Berényi, K.A.; Bór, J.; Popek, M.; Kis, Á. Searching for effects caused by thunderstorms in midlatitude sporadic E layers. J. Atmos. Sol. Terr. Phys. 2017, 161, 150–159. [Google Scholar] [CrossRef] [Green Version]
VLF Signal | Time UT 0337 UT + | Measured Values | LWPC Simulation | ||||||
---|---|---|---|---|---|---|---|---|---|
A (dB) | ΔA (dB) | P (°) | ΔP (°) | A (dB) | ΔA (dB) | P (°) | ΔP (°) | ||
NAA/24.0 kHz unperturbed values | 20.16 s | 55.42 | 0 | 157.08 | 0 | 55.63 | 0 | 173.18 | 0 |
NAA/24.0 kHz perturbed values | 25.54 s | 54.37 | −1.05 | 170.03 | 12.95 | 54.62 | −1.01 | 195.02 | 21.84 |
GQD/22.1 kHz unperturbed values | 20.16 s | 70.70 | 0 | −178.05 | 0 | 70.40 | 0 | −214.88 | 0 |
GQD/22.1 kHz perturbed values | 25.54 s | 68.96 | −1.74 | −169.05 | 9 | 68.65 | −1.75 | −209.22 | 5.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolarski, A.; Srećković, V.A.; Mijić, Z.R. Response of the Earth’s Lower Ionosphere to Solar Flares and Lightning-Induced Electron Precipitation Events by Analysis of VLF Signals: Similarities and Differences. Appl. Sci. 2022, 12, 582. https://doi.org/10.3390/app12020582
Kolarski A, Srećković VA, Mijić ZR. Response of the Earth’s Lower Ionosphere to Solar Flares and Lightning-Induced Electron Precipitation Events by Analysis of VLF Signals: Similarities and Differences. Applied Sciences. 2022; 12(2):582. https://doi.org/10.3390/app12020582
Chicago/Turabian StyleKolarski, Aleksandra, Vladimir A. Srećković, and Zoran R. Mijić. 2022. "Response of the Earth’s Lower Ionosphere to Solar Flares and Lightning-Induced Electron Precipitation Events by Analysis of VLF Signals: Similarities and Differences" Applied Sciences 12, no. 2: 582. https://doi.org/10.3390/app12020582
APA StyleKolarski, A., Srećković, V. A., & Mijić, Z. R. (2022). Response of the Earth’s Lower Ionosphere to Solar Flares and Lightning-Induced Electron Precipitation Events by Analysis of VLF Signals: Similarities and Differences. Applied Sciences, 12(2), 582. https://doi.org/10.3390/app12020582