The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials
Abstract
:1. Introduction
2. Oscillatory Reaction and Electrochemical Oscillation
3. Identification of Chinese Medicinal Materials
3.1. Species Identification
3.2. Genuine and Counterfeit Identification
3.3. Genuineness Identification
3.4. Quality Control and Evaluation
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Peng, Y.; Zhang, Z.; Liu, H.; Qi, Y.; Liu, S.; Xiao, P. GAP Production of TCM Herbs in China. Planta Med. 2010, 76, 1948–1955. [Google Scholar] [CrossRef] [Green Version]
- Tsukurova, V.; Evdokimova, O.; Prokofieva, V.; Matyushin, A. Morphological and Anatomical Study of Promising Herbal Raw Material-Large-Leaved Gentian (Gentiana macrophylla Pall.). J. Pharm. Sci. Res. 2018, 10, 3052. [Google Scholar]
- Hao, D.; Gu, X.; Xiao, P.; Peng, Y. Chemical and Biological Research of Clematis Medicinal Resources. Chin. Sci. Bull. 2013, 58, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.E.; Kim, Y.S.; Yi, M.J.; Park, W.G.; Yi, J.S.; Chun, S.R.; Han, S.S.; Lee, S.J. Physiological and Chemical Characteristics of Field-and Mountain-Cultivated Ginseng Roots. J. Plant. Biol. 2007, 50, 198–205. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, X.; Wei, J.; Xu, J.; Bi, Y.; Yang, M.; Gong, X.; Li, Z.; Ren, K.; Han, Q. Ethnopharmacology, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Radix Astragali. Chin. J. Integr. Med. 2021, 27, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, Y.; Xu, S.; Dong, W.; Pan, Z.; Wang, L. Discrimination of the Traditional Chinese Medicine from Schisandra Fruits by Flash Evaporation-Gas Chromatography/Mass Spectrometry and Fingerprint Analysis. Chromatographia 2015, 78, 1083–1093. [Google Scholar] [CrossRef]
- Zuo, T.-T.; Li, Y.-L.; Jin, H.-Y.; Gao, F.; Wang, Q.; Wang, Y.-D.; Ma, S.-C. HPLC–ICP-MS Speciation Analysis and Risk Assessment of Arsenic in Cordyceps Sinensis. Chin. Med. 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Zou, L.; Sheng, Y.; Bai, X.; Liu, Q.; Yan, B. Rapid HPLC Analytical Method Development for Herbal Medicine Formulae Based on Retention Rules Acquired from the Constituting Herbs. Anal. Sci. 2018, 34, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Wang, W.; Yang, N.; Guo, B.; Zhang, S.; Yang, R.; Yuan, Y.; Yu, J.; Hu, S.; Sun, Q. DNA Barcoding Provides Distinction between Radix Astragali and Its Adulterants. Sci. China Life Sci. 2010, 53, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, W.; Zhang, W.; Yu, Y. Changes in Soil Organic Carbon of Terrestrial Ecosystems in China: A Mini-Review. Sci. China Life Sci. 2010, 53, 766–775. [Google Scholar] [CrossRef]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef] [Green Version]
- Pechenkin, A. BP Belousov and His Reaction. J. Biosci. 2009, 34, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Zhabotinskii, A. Periodic Course of The Oxidation of Malonic Acid in a Solution (Studies on the Kinetics of Beolusov’s Reaction). Biofizika 1964, 9, 306–311. [Google Scholar]
- Zhabotinsky, A.M. Periodic Liquid Phase Reactions. Proc. Natl. Acad. Sci. USA 1964, 157, 392–395. [Google Scholar]
- Krug, H.J.; Pohlmann, L.; Kuhnert, L. Analysis of the Modified Complete Oregonator Accounting for Oxygen Sensitivity and Photosensitivity of Belousov-Zhabotinskii Systems. J. Phys. Chem. 1990, 94, 4862–4866. [Google Scholar] [CrossRef]
- Field, R.J.; Schneider, F. Oscillating Chemical Reactions and Nonlinear Dynamics. J. Chem. Educ. 1989, 66, 195. [Google Scholar] [CrossRef]
- Furrow, S.D.; Noyes, R.M. The Oscillatory Briggs-Rauscher Reaction 1. Examination of Subsystems. J. Am. Chem. Soc. 1982, 104, 38–42. [Google Scholar] [CrossRef]
- Olson, D.L.; Scheeline, A. The Peroxidase—NADH Biochemical Oscillator: Experimental System, Control Variables, and Oxygen Mass Transport. Anal. Chim. Acta 1993, 283, 703–717. [Google Scholar] [CrossRef]
- De Kepper, P.; Epstein, I.R. Mechanistic Study of Oscillations and Bistability in the Briggs-Rauscher Reaction. J. Am. Chem. Soc. 1982, 104, 49–55. [Google Scholar] [CrossRef]
- Wojtowicz, J. Oscillatory Behavior in Electrochemical Systems. In Modern Aspects of Electrochemistry; Springer: Berlin/Heidelberg, Germany, 1972; pp. 47–120. [Google Scholar]
- Koper, M.T. Non-Linear Phenomena in Electrochemical Systems. J. Chem. Soc. Faraday Trans. 1998, 94, 1369–1378. [Google Scholar] [CrossRef]
- Kolev, S.D.; Chow, C.W.; Davey, D.E.; Mulcahy, D.E. Oscillating Flow Injection Stripping Potentiometry. Anal. Chim. Acta 1995, 309, 293–299. [Google Scholar] [CrossRef]
- Jimenez-Prieto, R.; Silva, M.; Perez-Bendito, D. Analyte Pulse Perturbation Technique: A Tool for Analytical Determinations in Far-from-Equilibrium Dynamic Systems. Anal. Chem. 1995, 67, 729–734. [Google Scholar] [CrossRef]
- Rabai, G.; Kustin, K.; Epstein, I.R. A Systematically Designed PH Oscillator: The Hydrogen Peroxide-Sulfite-Ferrocyanide Reaction in a Continuous-Flow Stirred Tank Reactor. J. Am. Chem. Soc. 1989, 111, 3870–3874. [Google Scholar] [CrossRef]
- Pejić, N.D.; Blagojević, S.M.; Anić, S.R.; Vukojević, V.B.; Mijatović, M.D.; Ćirić, J.S.; Marković, Z.S.; Marković, S.D.; Kolar-Anić, L.Z. Kinetic Determination of Morphine by Means of Bray–Liebhafsky Oscillatory Reaction System Using Analyte Pulse Perturbation Technique. Anal. Chim. Acta 2007, 582, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Pejić, N.; Blagojević, S.; Anić, S.; Vukojević, V.; Kolar-Anić, L. Microquantitative Determination of Hesperidin by Pulse Perturbation of the Oscillatory Reaction System. Anal. Bioanal. Chem. 2005, 381, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Pejić, N.; Anić, S.; Kuntić, V.; Vukojević, V.; Kolar-Anić, L. Kinetic Determination of Microquantities of Rutin by Perturbation of the Bray-Liebhafsky Oscillatory Reaction in an Open System. Microchim. Acta 2003, 143, 261–267. [Google Scholar] [CrossRef]
- Nanqin, G.; Congjun, A.; Yi, L.; Ruxiu, C. Determination of Hexacyanoferrates Based on the Diacetone–BrO3−−Mn(II)−H2SO4 Chemical Oscillatory Reaction. Analyst 1998, 123, 2395–2397. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R. A Green and Sensitive Guanine-Based DNA Biosensor for Idarubicin Anticancer Monitoring in Biological Samples: A Simple and Fast Strategy for Control of Health Quality in Chemotherapy Procedure Confirmed by Docking Investigation. Chemosphere 2021, 132928. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Fu, L.; Sanati, A.L.; Alizadeh, M.; Karaman, C.; Orooji, Y. Cyanazine Herbicide Monitoring as a Hazardous Substance by a DNA Nanostructure Biosensor. J. Hazard. Mater. 2022, 423, 127058. [Google Scholar] [CrossRef]
- Chazalviel, J.; Ozanam, F. A Theory for the Resonant Response of an Electrochemical System: Self-Oscillating Domains, Hidden Oscillation, and Synchronization Impedance. J. Electrochem. Soc. 1992, 139, 2501. [Google Scholar] [CrossRef]
- Mukouyama, Y.; Nakanishi, S.; Konishi, H.; Ikeshima, Y.; Nakato, Y. New-Type Electrochemical Oscillation Caused by Electrode− Surface Inhomogeneity and Electrical Coupling as Well as Solution Stirring through Electrochemical Gas Evolution Reaction. J. Phys. Chem. B 2001, 105, 10905–10911. [Google Scholar] [CrossRef]
- Cheng, W.X.; Chen, J.; Fang, C.W. Study on Electrochemical Fingerprints of Different Chrysanthemums by Using B–Z Oscillation System. Chin. Chem. Lett. 2011, 22, 729–732. [Google Scholar] [CrossRef]
- Yan, S.; Yue, Y.; Su, L.; Hao, M.; Wang, X.; Zuo, T. Development of Electrochemical Oscillation Method for Identification of Prunus persica, Prunus davidiana, and Prunus armeniaca Nuts. Front. Chem. 2020, 8, 748. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Nie, F. Chinese Medicine Oscillatory Fingerprinting. China Basic Sci. 2004, 2. [Google Scholar]
- Yuan, C.; Li, Z.; Chen, S.; Tian, J. The Oscillating Fingerprints of Many Kinds of Traditional Chinese Medicines. Chin. J. Nat. Med. 2014, 2, 42–44. [Google Scholar]
- Shi, H.; Guo, Y.; Wang, H.; Jin, Y.; Xin, J.; Li, S. Study on Application of Nonlinear Chemical Fingerprints Technique for Identification of Tree Peony Bark and Its Counterfeit. Heilongjiang Med. Pharm. 2013, 36, 37–38. [Google Scholar]
- Zhang, X.; Tong, D.; Li, S.; Huang, J.; Zhang, Y. Electrochemical Fingerprints for Traditional Chinese Medicine Rhubarb. Heilongjiang Med. Sci. 2010, 33, 21–22. [Google Scholar]
- Cheng, W.; Guan, Y.; Chen, J.; Fang, C. Study on Chemical Fingerprints of Traditional Chinese Medicine Radix Paeoniae Rubra in Oscillation System. J. Instrum. Anal. 2011, 30, 937–940. [Google Scholar]
- Shi, H.; Wang, R.; Chen, L.; Lian, L.; Zou, Y.; Yang, Q.; Cheng, W. Study on Electrochemical Fingerprints of Magnolia liliflora. Mod. Chin. Med. 2015, 3, 204–207. [Google Scholar]
- Zhang, T.; Liang, Y.; Yuan, B.; Ding, F.; Zhang, Y.; Wei, M.; Chen, X. Determining Method and Conditional Factors of Electrochemical Fingerprint of Chinese Traditional Medicine. Chin. Sci. Bull. 2007, 52, 2190–2202. [Google Scholar] [CrossRef]
- Fang, X.Q.; Zhang, T.M.; Zhao, Z.; Xiang, F.Q.; Liang, Y.Z.; Wang, M.; Zhu, R.; Chen, S.; Qiao, J.X. Application of Nonlinear Chemical Fingerprinting to Identification, Evaluation and Clinical Use of Glycyrrhiza. Chin. Sci. Bull. 2010, 55, 2937–2944. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, C. Distinguish Chinese Medicinal Herbs by Chemical Oscillating Fingerprints. J. Chin. Med. Mater. 2004, 27, 10–12. [Google Scholar]
- Du, B.; Amp, M.J. The Electrochemical Fingerprint of Herbal Medicines Based on BrO3−-MnSO4-H2SO4-Malonic Acid Chemical Oscillating System. Chin. Sci. Bull. 2012, 57, 904–909. [Google Scholar]
- Zhang, Y.; Chen, W.; Luo, S.; Zheng, W.; Li, L.; Li, S. Comparison Different Parts of Herbal Medicine Using Electrochemistry Fingerprint. J. Jiamusi Univ. 2011, 29, 890–892. [Google Scholar]
- Bao, Z.; Guiyue, D.; Hua, F.; Wei, Y. Electrochemical Fingerprint of Traditional Chinese Medicines Based on BrO−3-Ce4+-H+-Malonic Acid/Tartaric Acid Chemical Oscillating System. China J. Chin. Mater. Med. 2018, 43, 4288–4294. [Google Scholar]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K. A Critical Review on the Use of Potentiometric Based Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2021, 113252. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Peng, M.; Zhang, Z.; Zeng, H.; Shi, R.; Ma, X.; Wang, L.; Liao, B. Graphene-Assisted Electrochemical Sensor for Detection of Pancreatic Cancer Markers. Front. Chem. 2021, 9, 683. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Y.; Zhang, J.; Karimi-Maleh, H.; Xu, Y.; Zhou, Q.; Fu, L.; Wu, W. Characterization of the Electrochemical Profiles of Lycoris Seeds for Species Identification and Infrageneric Relationships. Anal. Lett. 2020, 53, 2517–2528. [Google Scholar] [CrossRef]
- Miao, X.; Shang, X.; Wang, D.; Pan, H.; Wang, H.; Guo, J. Identification of 4 Kinds of Chinese Herbal Medicines in Yinghuang San by TLC. J. Tradit. Chin. Vet. Med. 2017, 19, 18–21. [Google Scholar]
- Xue, Z. Identification of Several Ranunculaceae Traditional Chinese Medicines by Electrochemical Fingerprint Technique. Heilongjiang Med. Sci. 2010, 33, 98–100. [Google Scholar]
- Wang, J.; Yan, H. The Application of Electrochemical Fingerprint Identification Technology in Identification of Rhubarb, Giant Knotweed Rhizome and Polygonum Multiflorum. J. Pract. Tradit. Chin. Intern. Med. 2013, 7, 442–447. [Google Scholar]
- Chen, X.Z.; Zou, G.H.; Shou-Jun, L.I.; Liu, X.B.; Liu, B.M.; Jia, L.Y.; Zhao, X.; Teng, Y. A New Method of Identification from Several Fritillaria by Electrochemical Fingerprints. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 73–75. [Google Scholar]
- Wang, D.; Shen, B.; Di, W.; Peng, J.; Wang, S.; Li, S. Rapid Identification of Notoginseng by Nonlinear Chemical Fingerprinting. Guangdong Chem. Ind. 2017, 44, 25–26. [Google Scholar]
- Zou, G.H.; Zhao, T.T.; Shen, G.Z.; Shou-Jun, L.I. Identification of Codonopsis Radix and Gentianae Macrophylae Radix by Nonlinear Electrochemistry Fingerprint. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 68–71. [Google Scholar]
- Xuanqi, F.; Xiali, W.; Fangbin, W.; Binbin, Z.; Jianhui, Z.; Xiong, C. Identification of the Authenticity and Origin of Gastrodia Elata Bl. by Non-Linear Chemical Fingerprint. J. Food Saf. Qual. Insp. 2018, 9, 4693–4699. [Google Scholar]
- Wen, Q.; Zeng, L.; Deng, F.; Li, R.; Ding, Y. Rapid Identification of Toddalia asiatica (Linnaeus) Lamarck, Roots and Stems of Zanthoxylum nitidum (Roxb.) DC Based on Non-Linear Chemical Fingerprint. Cent. South Phar. 2019, 17, 1215–1219. [Google Scholar]
- Tan, X.; Zhang, T.; Feiyue, D.; Jian, H.; Qing, W.; Chunnan, C. Identification of Rhizoma Acori and Determination of Different Contents of Rhizoma Acori in Binary Mixture by Nonlinear Chemical Fingerprinting. J. High. Sch. Chem. 2018, 39, 1440–1448. [Google Scholar]
- Li, S.; Huang, J.; Lan, H.; Zou, G.; Luo, S. Study on Application of Electrochemical Fingerprints for Ldentification of Rhizoma Coptidis and a Kind of False. Liaoning J. Tradit. Chin. Med. 2010, 37, 902–903. [Google Scholar]
- Jiao, P.; Wang, D.; Li, S. Identification of Safflower by Nonlinear Chemical Fingerprinting. Guangdong Chem. Ind. 2018, 45, 32–33. [Google Scholar]
- Han, L.; Liu, Y.; Jiao, P.; Wang, S.; Wang, C.; Chu, Y.; Li, S. Identification of Rhodiola by Nonlinear Chemical Fingerprinting. Guangdong Chem. Ind. 2019, 46, 21–22. [Google Scholar]
- Wang, H.; Hou, D.; Wang, H. Identification of Several Groups of Easily Confused Chinese Herbal Medicines by Electrochemical Fingerprint. Liaoning J. Tradit. Chin. Med. 2010, 37, 703–705. [Google Scholar]
- Zhang, X.; Wang, X.; Wang, J.; Fan, B.; Ma, G.; Li, S. Identification of Several Leguminous Herbs by Electrochemical Fingerprints. J. Jiamusi Univ. 2010, 3, 429–430. [Google Scholar]
- Li, Z.; Zhao, W. A Method for Indentifying Chinese Herbal Medicine Based on the Electrochemical Principle-Chemical Oscillation Technique. J. Baoji Univ. 2011, 31, 9–11. [Google Scholar]
- Li, Z.; Zhao, W.; Yuan, C. Digital Characteristics of the Oscillation Fingerprints for Herbal Medicine. J. Tongji Univ. 2010, 031, 33–36. [Google Scholar]
- Zha, X.; Cheng, W.; Chen, Z.; Zha, G. Study on Electrochemical Fingerprints of Fructus Chaenomelis. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 79–81. [Google Scholar]
- Chen, L.; Zhu, H.; Zhu, L.; Cheng, W.; Yang, S.; Yang, Q. Study on Electrochemical Fingerprints of Acorus Tatarinowii Schott of Different Origin. Chem. World 2017, 58, 288–293. [Google Scholar]
- Shuaifeng, L.; Chuanzhu, Z.; Zhang, L.; Lan, C.; He, D.-X.; Yao, W.; Erxin, S.; Anwei, D. HPLC Fingerprinting of He Shou Wu from Different Origins. Chin. Herb. Med. 2019, 46, 6–12. [Google Scholar]
- Zhang, H.; Xiao, C.; Tang, A. A New Method for Determination of the Sugar Content in Honey by Nonlinear Chemistry Fingerprint Spectrum. Fujian Anal. Test. 2012, 21, 7–12. [Google Scholar]
- Yuan, C.; Li, Z. Oscillatory Fingerprinting of Liu Wei Di Huang Wan. Prep. Chin. Med. 2005, 27, 726–728. [Google Scholar]
Name of TCMs | References |
---|---|
Rhei Radix et Rhizoma (Rheum palmatum, Rheum tanguticum or Rheum officinale) and Rheum franzenbachii | [51] |
Coptidis Rhizoma (Coptis chinensis, Coptis deltoidea or Coptis teeta) and its counterfeit | [59] |
Carthami Flos (Carthamus tinctorius) and its counterfeit | [60] |
Rhodiolae Crenulatae Radix et Rhizoma (Rhodiola crenulat) and its counterfeit | [61] |
Notoginseng Radix et Rhizoma (Panax notoginseng) and its counterfeit | [54] |
Codonopsis Radix (Codonopsis pilosula, Codonopsis pilosula var. modesta or Codonopsis tangshen) and Gentianae Macrophyllae Radix (Gentiana macrophylla, Gentiana straminea or Gentiana crassicaulis) | [55] |
Persicae Semen (Prunus persica or Prunus davidiana), Semen armeniacae, Armeniacae Semen Amarum (Prunus armeniaca var. ansu, Prunus sibirica, Prunus mandshurica, Prunus armeniaca) | [62] |
Polygoni Cuspidati Rhizoma Et Radix (Reynoutria japonica) and Gentianae Macrophyllae Radix (Gentiana macrophylla, Gentiana straminea or Gentiana crassicaulis) | |
Pulsatillae Radix (Pulsatilla chinensis) and Rhapontici Radix (Rhaponticum uniflorum) | |
Polygoni Multiflori Radix (Polygonum multiflorum) and Rhei Radix et Rhizoma (Rheum officinale) | [52] |
Fritillariae Cirrhosae Bulbus (Fritillaria cirrhosa, F. unibracteata, F. przewalskii, F. delavayi, F. taipaiensis or F. unibracteata var. wabuensis ), Fritillariae Ussuriensis Bulbus (F. ussuriensis), Fritillariae Thunbergii Bulbus (F. thunbergii) | [53] |
Coptidis Rhizoma (Coptis chinensis, Coptis deltoidea or Coptis teeta), Pulsatillae Radix (Pulsatilla chinensis) and Clematidis Radix et Rhizoma (Clematis chinensis, Clematis hexa petala or Clematis manshurica) | [51] |
Astragali Radix (Astragalus membranaceus var. mongholicus or Astragalus membranaceus), Citri Reticulatae Pericarpium (Citrus reticulata), Puerariae Lobatae Radix (Pueraria lobata), Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis, Glycyrrhiza inflata or Glycyrrhiza glabra), Paeoniae Radix Alba (Paeonia ladiflora), Salviae Miltiorrhizae Radix et Rhizoma (Salvia miltiorrhiza) and Acanthopanacis Cortex (Acanthopanax gracilistylus) | [44] |
Astragali Radix (Astragalus membranaceus), Cassia Semen (Cassia obtusifolia or Cassia tora), Sophorae Flavescentis Radix (Sophora flavescens) | [63] |
Paeoniae Radix Rubra (Paeonia lactiflora or Paeonia veitchii), Paridis Rhizoma (Paris polyphylla var. yunnanensis or Paris polyphylla var. chinensis), Citri Reticulatae Pericarpium (Citrus reticulata), Pinalliae Rhizoma (Pineilia ternata), Ophiopogonis Radix (Ophiopogon japonicus), Stephaniae Tetrandrae Radix (Stephania tetrandra) | [64] |
Chuanxiong Rhizoma (Ligusticum chuanxiong), Paridis Rhizoma (Paris polyphylla var. yunnanensis or Paris polyphylla var. chinensis), Citri Reticulatae Pericarpium (Citrus reticulata), Pinalliae Rhizoma (Pineilia ternata), Ophiopogonis Radix (Ophiopogon japonicus), Stephaniae Tetrandrae Radix (Stephania tetrandra) | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Zheng, Y.; Fu, L. The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials. Appl. Sci. 2022, 12, 616. https://doi.org/10.3390/app12020616
Shi X, Zheng Y, Fu L. The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials. Applied Sciences. 2022; 12(2):616. https://doi.org/10.3390/app12020616
Chicago/Turabian StyleShi, Xin, Yuhong Zheng, and Li Fu. 2022. "The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials" Applied Sciences 12, no. 2: 616. https://doi.org/10.3390/app12020616
APA StyleShi, X., Zheng, Y., & Fu, L. (2022). The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials. Applied Sciences, 12(2), 616. https://doi.org/10.3390/app12020616