Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression
Abstract
:1. Introduction
2. Methods
3. Numerical Uncertainty Analysis
3.1. Generation of the Training and Test Data Sets
3.2. Evaluation of the Results
3.2.1. Sparsity
3.2.2. Convergence
3.2.3. Natural Frequency
3.2.4. Coefficient of Determination
3.2.5. Comparison between LSST and LSPL
4. The Test Bench
4.1. Experimental Setup
4.2. Governing Equation and Parameters
4.3. Excitation Signals
5. Data Analysis and Results
5.1. System Identification with the SINDy-LSPL Method
5.2. Reconstruction of the Signals in State Space
5.3. Results Using Impulse Excitation
5.4. Results Using Sweep Signal
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stender, M.; Oberst, S.; Hoffmann, N. Recovery of differential equations from impulse response time series data for model identification and feature extraction. Vibration 2019, 2, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Mangan, N.M.; Askham, T.; Brunton, S.L.; Kutz, J.N.; Proctor, J.L. Model selection for hybrid dynamical systems via sparse regression. Proc. R. Soc. A 2019, 475, 20180534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loiseau, J.C.; Brunton, S.L. Constrained sparse Galerkin regression. J. Fluid Mech. 2018, 838, 42–67. [Google Scholar] [CrossRef] [Green Version]
- Unbehauen, H.; Bohn, C. Identifikation Dynamischer Systeme: Methoden zur Modellbildung Anhand von Messungen; Springer: Wiesbaden, Germany, 2016. [Google Scholar]
- Oberst, S. Nonlinear Dynamics: Towards a paradigm change via evidence-based complex dynamics modelling. In Proceedings of the 2018 Noise and Vibration Emerging Methods (NOVEM), Ibiza, Spain, 7–9 May 2018. [Google Scholar]
- Kerschen, G.; Worden, K.; Vakakis, A.F.; Golinval, J.C. Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 2006, 20, 505–592. [Google Scholar] [CrossRef] [Green Version]
- Brunton, S.L.; Kutz, J.N. Methods for data-driven multiscale model discovery for materials. J. Phys. Mater. 2019, 2, 044002. [Google Scholar] [CrossRef]
- Noël, J.P.; Kerschen, G. Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 2017, 83, 2–35. [Google Scholar] [CrossRef]
- Mangan, N.M.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2016, 2, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Mormann, F.; Kreuz, T.; Andrzejak, R.G.; David, P.; Lehnertz, K.; Elger, C.E. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 2003, 53, 173–185. [Google Scholar] [CrossRef]
- Rothman, P. Nonlinear Time Series Analysis of Economic and Financial Data; Dynamic Modeling and Econometrics in Economics and Finance; Springer: Boston, MA, USA, 1999; Volume 1. [Google Scholar]
- Coca, A.E.; Correa, D.C.; Zhao, L. Computer-aided music composition with LSTM neural network and chaotic inspiration. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), Dallas, TX, USA, 4–9 August 2013; Angelov, P., Levine, D., Apolloni, B., Eds.; IEEE: Piscataway, NJ, USA, 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Serrà, J.; Serra, X.; Andrzejak, R.G. Cross recurrence quantification for cover song identification. New J. Phys. 2009, 11, 093017. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.; Zhou, Y.L.; Kang, J. Dynamic Model Updating for Bridge Structures Using the Kriging Model and PSO Algorithm Ensemble with Higher Vibration Modes. Sensors 2018, 18, 1879. [Google Scholar] [CrossRef] [Green Version]
- Csurcsia, P.Z.; Troyer, T.D. An empirical study on decoupling PNLSS models illustrated on an airplane. IFAC-PapersOnLine 2021, 54, 673–678. [Google Scholar] [CrossRef]
- Wu, T.; Kareem, A. Vortex-induced vibration of bridge decks: Volterra series-based model. J. Eng. Mech. 2013, 139, 1831–1843. [Google Scholar] [CrossRef]
- Qi, C.; Lin, J.; Wu, Y.; Gao, F. A Wiener Model Identification for Creep and Vibration Linear and Hysteresis Nonlinear Dynamics of Piezoelectric Actuator. IEEE Sens. J. 2021, 21, 27570–27581. [Google Scholar] [CrossRef]
- Saleem, A.; Mesbah, M.; Al-Ratout, S. Nonlinear hammerstein model identification of amplified piezoelectric actuators (APAs): Experimental considerations. In Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 633–638. [Google Scholar] [CrossRef]
- Lu, X.; Liao, W.; Huang, W.; Xu, Y.; Chen, X. An improved linear quadratic regulator control method through convolutional neural network–based vibration identification. J. Vib. Control 2021, 27, 839–853. [Google Scholar] [CrossRef]
- Zhang, Y.; Miyamori, Y.; Mikami, S.; Saito, T. Vibration-based structural state identification by a 1-dimensional convolutional neural network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 822–839. [Google Scholar] [CrossRef]
- Elmegaard, M.; Rübel, J.; Inagaki, M.; Kawamoto, A.; Starke, J. Equation-Free Continuation of Maximal Vibration Amplitudes in a Nonlinear Rotor-Bearing Model of a Turbocharger. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, San Diego, CA, USA, 30 August–2 September 2009; Parts A, B and C. Volume 4. [Google Scholar]
- Kaheman, K.; Kutz, J.N.; Brunton, S.L. SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc. R. Soc. A 2020, 476, 20200279. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H. Sparse representation for damage identification of structural systems. Struct. Health Monit. 2021, 20, 1644–1656. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef] [Green Version]
- Shea, D.E.; Brunton, S.L.; Kutz, J.N. SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems. Phys. Rev. Res. 2021, 3, 023255. [Google Scholar] [CrossRef]
- Kaiser, E.; Kutz, J.N.; Brunton, S.L. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. A 2018, 474, 20180335. [Google Scholar] [CrossRef]
- Fasel, U.; Kaiser, E.; Kutz, J.N.; Brunton, B.W.; Brunton, S.L. SINDy with Control: A Tutorial. arXiv 2021, arXiv:2108.13404. [Google Scholar]
- Rudy, S.; Alla, A.; Brunton, S.L.; Kutz, J.N. Data-driven identification of parametric partial differential equations. SIAM J. Appl. Dyn. Syst. 2019, 18, 643–660. [Google Scholar] [CrossRef]
- Schaeffer, H. Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. A 2017, 473, 20160446. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive sensing. IEEE Signal Process. Mag. 2007, 24, 118–120. [Google Scholar] [CrossRef]
- Brunton, S.L.; Tu, J.H.; Bright, I.; Kutz, J.N. Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst. 2014, 13, 1716–1732. [Google Scholar] [CrossRef]
- Kutz, J.N.; Tu, J.H.; Proctor, J.L.; Brunton, S.L. Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2016, 2, 165–191. [Google Scholar] [CrossRef]
- Zheng, P.; Askham, T.; Brunton, S.L.; Kutz, J.N.; Aravkin, A.Y. A Unified Framework for Sparse Relaxed Regularized Regression: SR3. IEEE Access 2019, 7, 1404–1423. [Google Scholar] [CrossRef]
- Belloni, A.; Chernozhukov, V. Least squares after model selection in high-dimensional sparse models. Bernoulli 2013, 19, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an intermittently forced linear system. Nat. Commun. 2017, 8, 19. [Google Scholar] [CrossRef]
- Champion, K.; Lusch, B.; Kutz, J.N.; Brunton, S.L. Data-driven discovery of coordinates and governing equations. Proc. Natl. Acad. Sci. USA 2019, 116, 22445–22451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacic, I.; Brennan, M.J. The Duffing Equation: Nonlinear Oscillators and Their Phenomena; Wiley: Oxford, UK, 2011. [Google Scholar]
- Harrell, J.F.E.; Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed.; Springer series in statistics; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Zhang, L.; Schaeffer, H. On the Convergence of the SINDy Algorithm. Multiscale Model. Simul. 2019, 17, 948–972. [Google Scholar] [CrossRef] [Green Version]
- Meng, F. Modeling of Moving Sound Sources Based on Array Measurements. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2018. [Google Scholar]
- Ljung, L. System Identification Toolbox: User’s Guide; Version: Matlab 2019a; MathWorks, Inc.: Natick, MA, USA, 2019. [Google Scholar]
- Fürnkranz, J.; Gamberger, D.; Lavrač, N. Foundations of Rule Learning; Cognitive Technologies; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Shampine, L.F.; Reichelt, M.W. The matlab ode suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Bonamente, M. Statistics and Analysis of Scientific Data, 2nd ed.; Graduate Texts in Physics; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Platz, R.; Enss, G.C. Comparison of uncertainty in passive and active vibration isolation. In Model Validation and Uncertainty Quantification; Conference proceedings of the Society for Experimental Mechanics series; Atamturktur, H., Moaveni, B., Papadimitriou, C., Schoenherr, T., Eds.; Springer: Cham, Switzerland, 2015; Volume 3, pp. 15–25. [Google Scholar] [CrossRef]
- Lenz, J.; Platz, R. Quantification and Evaluation of Parameter and Model Uncertainty for Passive and Active Vibration Isolation. In Model Validation and Uncertainty Quantification; Barthorpe, R., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 3, pp. 135–147. [Google Scholar]
- Phillips, C.L.; Parr, J.M.; Riskin, E.A. Signals, Systems, and Transforms, 5th ed.; Pearson: Boston, MA, USA, 2014. [Google Scholar]
- Neitzel, F.; Schwanebeck, T.; Schwarz, W. Zur Genauigkeit von Schwingwegmessungen mit Hilfe von Beschleunigungs-und Geschwindigkeitssensoren. Allg. Vermess.-Nachrichten (AVN) 2007, 6, 202–2011. [Google Scholar]
- Hofmann, S. Numerische Integration von Beschleunigungssignalen. Mitteilungen Inst. FÜR Maschinenwesen Tech. Univ. Clausthal 2013, 38, 103–114. [Google Scholar]
Parameter | Value |
---|---|
Method | LSSL | LSPL |
---|---|---|
Median | 0.9996 | 0.9997 |
Upper quartile | 0.9998 | 0.9999 |
Lower quartile | 0.9992 | 0.9994 |
Maximum | 1 | 1 |
Minimum | 0.9936 | 0.9962 |
Number of points | 10,000 | 10,000 |
Number of outliers | 474 | 476 |
Parameter | Value | Description |
---|---|---|
m | 0.755 kg | moving mass |
k | N/m | stiffness |
D | 4% | damping ratio |
coefficient for in Equation (19) | ||
angular eigenfrequency | ||
eigenfrequency | ||
coefficient for in Equation (19) |
No. | in N | Coefficient | Relative Error | ||||
---|---|---|---|---|---|---|---|
1 | 3.39 | −47,360 | 0.9957 | ||||
2 | 3.36 | 0.9957 | |||||
3 | 6.62 | 0.9970 | |||||
4 | 6.72 | 0.9957 | |||||
5 | 13.11 | 0 | 0.9959 | ||||
Mean | - |
Coefficient | Mean | Standard Deviation | Coefficient of Variation |
---|---|---|---|
−47,312 | 33.3 | ||
0.43 | |||
903.66 |
No. | in N | Coefficient | Relative Error | |||
---|---|---|---|---|---|---|
1 | 5.4 | −46,556 | 0.9998 | |||
2 | 10.6 | −46,790 | 0.9997 | |||
3 | 21.6 | −47,385 | 0.9996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Adams, C.; Melz, T. Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression. Appl. Sci. 2022, 12, 747. https://doi.org/10.3390/app12020747
Ren Y, Adams C, Melz T. Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression. Applied Sciences. 2022; 12(2):747. https://doi.org/10.3390/app12020747
Chicago/Turabian StyleRen, Yaxiong, Christian Adams, and Tobias Melz. 2022. "Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression" Applied Sciences 12, no. 2: 747. https://doi.org/10.3390/app12020747
APA StyleRen, Y., Adams, C., & Melz, T. (2022). Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression. Applied Sciences, 12(2), 747. https://doi.org/10.3390/app12020747