Numerical Investigation of the Temporal Contrast in ps-OPCPA with Compact Double BBO Arrangement
Abstract
:1. Introduction
2. Numerical Method
3. Results and Discussion
3.1. Temporal Contrast in the Traditional OPCPA Arrangement
3.2. Temporal Contrast in the Compact Double BBO Arrangement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chini, M.; Zhao, K.; Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 2014, 8, 178–186. [Google Scholar]
- Mondal, S.; Shirozhan, M.; Ahmed, N.; Bocoum, M.; Boehle, F.; Vernier, A.; Haessler, S.; Lopez-Martens, R.; Sylla, F.; Sire, C.; et al. Surface plasma attosource beamlines at ELI-ALPS. J. Opt. Soc. Am.-Opt. Phys. 2018, 35, A93–A102. [Google Scholar] [CrossRef]
- Gilbertson, S.; Wu, Y.; Khan, S.D.; Chini, M.; Zhao, K.; Feng, X.; Chang, Z. Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier. Phys. Rev. A 2010, 81, 43810. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, I.; Altun, Z.; Topcu, T. Wavelength scaling of high-order-harmonic-generation efficiency by few-cycle laser pulses: Influence of carrier-envelope phase. Phys. Rev. A 2012, 86, 43836. [Google Scholar] [CrossRef]
- Nerush, E.N.; Kostyukov, I.Y. Carrier-Envelope Phase Effects in Plasma-Based Electron Acceleration with Few-Cycle Laser Pulses. Phys. Rev. Lett. 2009, 103, 35001. [Google Scholar] [CrossRef] [PubMed]
- Rácz, P.; Irvine, S.E.; Lenner, M.; Mitrofanov, A.; Baltuška, A.; Elezzabi, A.Y.; Dombi, P. Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 2011, 98, 111116. [Google Scholar] [CrossRef]
- Fülöp, J.A.; Major, Z.; Henig, A.; Kruber, S.; Weingartner, R.; Clausnitzer, T.; Kley, E.B.; Tunnermann, A.; Pervak, V.; Apolonskiy, A.; et al. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses. New J. Phys. 2007, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Kessel, A.; Leshchenko, V.E.; Jahn, O.; Krüger, M.; Münzer, A.; Schwarz, A.; Pervak, V.; Trubetskov, M.; Trushin, S.A.; Krausz, F.; et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 2018, 5, 434–442. [Google Scholar] [CrossRef]
- Kretschmar, M.; Tuemmler, J.; Schütte, B.; Hoffmann, A.; Senfftleben, B.; Mero, M.; Sauppe, M.; Rupp, D.; Vrakking, M.J.J.; Will, I.; et al. Thin-disk laser-pumped OPCPA system delivering 4.4 TW few-cycle pulses. Opt. Express 2020, 28, 34574–34585. [Google Scholar] [CrossRef]
- Fattahi, H.; Alismail, A.; Wang, H.; Brons, J.; Pronin, O.; Buberl, T.; Vamos, L.; Arisholm, G.; Azzeer, A.M.; Krausz, F. High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier. Opt. Lett. 2016, 41, 1126–1129. [Google Scholar] [CrossRef]
- Jung, R.; Tümmler, J.; Will, I. Regenerative thin-disk amplifier for 300 mJ pulse energy. Opt. Express 2016, 24, 883–887. [Google Scholar] [CrossRef]
- Herrmann, D.; Veisz, L.; Tautz, R.; Tavella, F.; Schmid, K.; Pervak, V.; Krausz, F. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 2009, 34, 2459–2461. [Google Scholar] [CrossRef]
- Witte, S.; Zinkstok, R.; Wolf, A.; Hogervorst, W.; Ubachs, W.; Eikema, K. A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification. Opt. Express 2006, 14, 8168–8177. [Google Scholar] [CrossRef] [Green Version]
- Rivas, D.E.; Borot, A.; Cardenas, D.; Marcus, G.; Gu, X.; Herrmann, D.; Xu, J.; Tan, J.; Kormin, D.; Ma, G.; et al. Next Generation Driver for Attosecond and Laser-plasma Physics. Sci. Rep. 2017, 7, 5224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, S.; Stanislauskas, T.; Balciunas, I.; Budriunas, R.; Adamonis, J.; Danilevicius, R.; Viskontas, K.; Lengvinas, D.; Veitas, G.; Gadonas, D.; et al. SYLOS lasers–The frontier of few-cycle, multi-TW, kHz lasers for ultrafast applications at extreme light infrastructure attosecond light pulse source. J. Phys. Photonics 2020, 2, 45003. [Google Scholar] [CrossRef]
- Zheng, J.; Zacharias, H. Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification. Appl. Phys. B 2009, 96, 445–452. [Google Scholar] [CrossRef]
- Dou, T.H.; Tautz, R.; Gu, X.; Marcus, G.; Feurer, T.; Krausz, F.; Veisz, L. Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave. Opt. Express 2010, 18, 27900–27909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavella, F.; Nomura, Y.; Veisz, L.; Pervak, V.; Marcinkevicius, A.; Krausz, F. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt. Lett. 2007, 32, 2227–2229. [Google Scholar] [CrossRef]
- Verluise, F.; Laude, V.; Cheng, Z.; Spielmann, C.; Tournois, P. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping. Opt. Lett. 2000, 25, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Baudisch, M.; Pires, H.; Ishizuki, H.; Taira, T.; Hemmer, M.; Biegert, J. Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz. J. Opt. 2015, 17, 94002. [Google Scholar] [CrossRef]
- Sosnowski, T.S.; Stephens, P.B.; Norris, T.B. Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification. Opt. Lett. 1996, 21, 140–142. [Google Scholar] [CrossRef]
- Louisell, W.H.; Yariv, A.; Siegman, A.E. Quantum Fluctuations and Noise in Parametric Processes. I. Phys. Rev. 1961, 124, 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, J.M.; Buck, A.; Borot, A.; Schmid, K.; Sears, C.; Tsakiris, G.D.; Krausz, F.; Veisz, L. Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology. Opt. Lett. 2011, 36, 3145–3147. [Google Scholar] [CrossRef]
- Manzoni, C.; Moses, J.; Kärtner, F.X.; Cerullo, G. Excess quantum noise in optical parametric chirped-pulse amplification. Opt. Express 2011, 19, 8357–8366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Tsubakimoto, K.; Yoshida, H.; Uesu, T.; Tsuji, K.; Miyanaga, N. Spatial asymmetry of optical parametric fluorescence with a divergent pump beam and potential applications. Opt. Express 2017, 25, 7465–7474. [Google Scholar] [CrossRef]
- Stanislauskas, T.; Balčiūnas, I.; Tamuliene, V.; Budriūnas, R.; Varanavičius, A. Analysis of parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser. Lith. J. Phys. 2016, 56. [Google Scholar] [CrossRef]
- Wang, B.; Zou, X.; Jing, F. Quantum analysis of optical parametric fluorescence in the optical parametric amplification process. J. Opt. 2015, 17, 75503. [Google Scholar] [CrossRef]
- Tavella, F.; Marcinkevicius, A.; Krausz, F. Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system. New J. Phys. 2006, 8, 219. [Google Scholar]
- Moses, J.; Huang, S.; Hong, K.; Mücke, O.D.; Falcão-Filho, E.L.; Benedick, A.; Ilday, F.O.; Dergachev, A.; Bolger, J.A.; Eggleton, B.J.; et al. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt. Lett. 2009, 34, 1639–1641. [Google Scholar] [CrossRef] [Green Version]
- Cerullo, G.; Silvestri, S.D. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Zheng, J.; Zacharias, H. Non-collinear optical parametric chirped-pulse amplifier for few-cycle pulses. Appl. Phys. B 2009, 97, 765–779. [Google Scholar] [CrossRef]
- Gatti, A.; Wiedemann, H.; Lugiato, L.A.; Marzoli, I.; Oppo, G.L.; Barnett, S.M. Langevin treatment of quantum fluctuations and optical patterns in optical parametric oscillators below threshold. Phys. Rev. A 1997, 56, 877–897. [Google Scholar] [CrossRef]
- Homann, C.; Riedle, E. Direct measurement of the effective input noise power of an optical parametric amplifier. Laser Photonics Rev. 2013, 7, 580–588. [Google Scholar] [CrossRef]
- Stuart, N.; Bigourd, D.; Hill, R.; Robinson, T.; Mecseki, K.; Patankar, S.; New, G.; Smith, R. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier. Opt. Commun. 2015, 336, 319–325. [Google Scholar] [CrossRef] [Green Version]
Parameters | Config 1.1 | Config 1.1 | Config 2.1 | Config 2.2 |
---|---|---|---|---|
Noncollinear angle () | 2.304 | 2.304 | 2.079 | 2.079 |
Phase-matching angle of the BBO () | 23.73 | 23.46 | 23.53 | 23.31 |
Length of the BBO (mm) | 3.5 | 3.7 | 3.5 | 3.7 |
Phase-matching angle of the BBO () | 23.46 | 23.73 | 23.31 | 23.53 |
Length of the BBO (mm) | 4.1 | 3.6 | 3.6 | 3.6 |
Output energy (mJ) | 4.4 | 4.2 | 4.3 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Hu, J.; Wang, X.; Bai, P.; Chen, X.; Yang, X.; Wu, F.; Zhang, Z.; Yang, X.; Gui, J.; et al. Numerical Investigation of the Temporal Contrast in ps-OPCPA with Compact Double BBO Arrangement. Appl. Sci. 2022, 12, 934. https://doi.org/10.3390/app12020934
Chen H, Hu J, Wang X, Bai P, Chen X, Yang X, Wu F, Zhang Z, Yang X, Gui J, et al. Numerical Investigation of the Temporal Contrast in ps-OPCPA with Compact Double BBO Arrangement. Applied Sciences. 2022; 12(2):934. https://doi.org/10.3390/app12020934
Chicago/Turabian StyleChen, Haidong, Jiabing Hu, Xinliang Wang, Peile Bai, Xun Chen, Xihang Yang, Fenxiang Wu, Zongxin Zhang, Xiaojun Yang, Jiayan Gui, and et al. 2022. "Numerical Investigation of the Temporal Contrast in ps-OPCPA with Compact Double BBO Arrangement" Applied Sciences 12, no. 2: 934. https://doi.org/10.3390/app12020934
APA StyleChen, H., Hu, J., Wang, X., Bai, P., Chen, X., Yang, X., Wu, F., Zhang, Z., Yang, X., Gui, J., Qian, J., Liu, Y., Xu, Y., & Leng, Y. (2022). Numerical Investigation of the Temporal Contrast in ps-OPCPA with Compact Double BBO Arrangement. Applied Sciences, 12(2), 934. https://doi.org/10.3390/app12020934