Measurements and Correctness Criteria for Determining the Line Length of the Data Image Obtained in the Process of Electromagnetic Infiltration
Abstract
:1. Introduction
- (a) evaluation of the contrast based on the value of the average amplitude of pixels of the reconstructed image—columns number of reconstructed image;—number of column of reconstructed image ( 0, 1, 2, …, );—rows number (lines) of reconstructed image;—number of row (line) of reconstructed image ( 0, 1, 2, …, );—accuracy of the line length estimation of the reconstructed image for which the contrast of the reconstructed image is calculated. In the carried out analyzes, , 0.1, 0.01, 0.001, 0.0001 and 0.00001 were assumed;—value of image pixel amplitude for the line length calculated for accuracy ∆;—the maximum value of the image pixel amplitude for the line length calculated for the accuracy ∆;—the minimum value of the image pixel amplitude for the line length calculated for the accuracy ∆.
- (b) evaluation of the contrast based on the maximum and minimum values of the amplitude of the pixel of the reconstructed image
- (c) evaluation of the contrast based on the variance of the gray levels of the reconstructed image
- the showing that the methods of contrast assessment are not effective in relation to reconstructed images in the process of electromagnetic penetration;
- the proposing three methods which allow for determining the correct line length of the reconstructed image;
- the possibility of using the proposed methods in the automatic process of line length determining.
2. Sampling and Recording of Revealing Emission Signals
3. Evaluation of Raster Parameters
- (a) method I—based on the minimum value of the sum of the differences between the maximum and minimum amplitudes calculated for the individual vertical lines of the reconstructed image.
- (b) method II—based on the maximum value of the difference of the maximum and minimum values of the sum of the pixel amplitudes calculated for the individual vertical lines of the reconstructed image.
- (c) method III—based on the minimum value of the sum of the maximum pixel amplitudes calculated for the individual vertical lines of the reconstructed image.
3.1. Method I—Based on the Minimum Value of the Sum of the Differences between the Maximum and Minimum Amplitudes Calculated for the Individual Vertical Lines of the Reconstructed Image
3.2. Method II—Based on the Maximum Value of the Difference of the Maximum and Minimum Values of the Sum of the Pixel Amplitudes Calculated for the Individual Vertical Lines of the Reconstructed Image
3.3. Method III—Based on the Minimum Value of the Sum of the Maximum Pixel Amplitudes Calculated for the Individual Vertical Lines of the Reconstructed Image
4. Test Images and Test Conditions
5. Results of Tests and Analyses
5.1. Methods Based on Contrast Assessments
5.2. Proposed Methods of Line Length Estimation of the Reconstructed Image
- the proposed methods and criteria meet the requirements for the accuracy of the estimation of image line length ;
- the accuracy of the estimation of the image line length has an influence on the efficiency of the coherent summation process, the purpose of which is to improve the image quality;
- each of the methods (methods I, II, and III) is effective in the estimation of the image line length , regardless of the source of the revealing emission signal and the structure of the data contained in the reconstructed image;
- there may be differences in the estimated values of the image line length depending on the method used. However, this is not a method error. This is due to the fact that the value of the next approximation of the parameter is equal to half the accuracy range. Estimating with an accuracy of Δ one step higher shows that the value is the same regardless of the method used.
5.2.1. The Source of the Revealing Emission Signal in the Form of a Computer Monitor Working in the HDMI Standard
Figure 7a as a Primary Image, Monitor Mode 1280 × 1024/60 Hz, Pre-Estimated Value
Figure 7b as a Primary Image, Monitor Mode 1280 × 1024/60 Hz, Pre-Estimated Value
Figure 7c as a Primary Image, Monitor Mode 1280 × 1024/60 Hz, Pre-Estimated Value
5.2.2. The Source of the Revealing Emission Signal in the Form of a Computer Monitor Working in the VGA Standard
Figure 7d as a Primary Image, Monitor Mode 1280 × 1024/60 Hz, Pre-Estimated Value
Figure 7e as a Primary Image, Monitor Mode 1280 × 1024/60 Hz, Pre-Estimated Value
5.2.3. The Source of the Revealing Emission Signal in the Form of Display of Laser Printer
Figure 7f as a Primary Image, Display Mode Unknown, Pre-Estimated Value
6. Conclusions from the Analysis, Recommendations for the Software Implementation of Automatic Image Recognition
- method I—summing up the differences between the maximum and minimum values for the adopted horizontal line length of the image (image width);
- method II—calculating the difference between the maximum and minimum value of the sum of the pixel amplitudes numerous for individual vertical lines of the image for the assumed length of the horizontal line of the image (image width);
- method III—summing up the maximum values of pixel amplitudes determined for individual vertical lines of the image for the assumed length of the horizontal line of the image (image width).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Mateen, A.; Hanan, A.; Amin, F. Advanced Security Framework for Internet of Things (IoT). Technologies 2022, 10, 60. [Google Scholar] [CrossRef]
- Aydın, H. TEMPEST Attacks and Cybersecurity. Int. J. Eng. Technol. 2019, 5, 100–104. [Google Scholar]
- Loughry, J. “Oops! Had the silly thing in reverse”—Optical injection attacks in through LED status indicators. In Proceedings of the International Symposium and Exhibition on Electromagnetic Compatibility EMC Europe, Barcelona, Spain, 2–6 September 2022. [Google Scholar]
- Mahshid, Z.; Saeedeh, H.T.; Ayaz, G. Security limits for electromagnetic radiation from CRT display. In Proceedings of the Second International Conference on Computer and Electrical Engineering, Dubai, United Arab Emirates, 28–30 January 2009; pp. 452–456. [Google Scholar]
- Meynard, O.; Réal, D.; Guilley, S.; Flament, F.; Danger, J.L.; Valette, F. Characterization of the electromagnetic side channel in frequency domain. In Proceedings of the Information Security and Cryptology International Conference—Lecture Notes in Computer Science, Shanghai, China, 20–24 October 2010; Abstract No. 6584. pp. 471–486. [Google Scholar]
- Hee-Kyung, L.; Yong-Hwa, K.; Young-Hoon, K.; Seong-Cheol, K. Emission Security Limits for Compromising Emanations Using Electromagnetic Emanation Security Channel Analysis. IEICE Trans. Commun. 2013, 96, 2639–2649. [Google Scholar]
- Boitan, A.; Bartusica, R.; Halunga, S.; Popescu, M.; Ionuta, I. Compromising Electromagnetic Emanations of Wired USB Keyboards. In Proceedings of the Third International Conference on Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS), Bucharest, Romania, 12–14 October 2017; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhang, N.; Yinghua, L.; Qiang, C.; Yiying, W. Investigation of Unintentional Video Emanations from a VGA Connector in the Desktop Computers. IEEE Trans. Electromagn. Compat. 2017, 59, 1826–1834. [Google Scholar] [CrossRef]
- Kubiak, I.; Loughry, J. LED Arrays of Laser Printers as Valuable Sources of Electromagnetic Waves for Acquisition of Graphic Data. Electronics 2019, 8, 1078. [Google Scholar] [CrossRef] [Green Version]
- De Meulemeester, P.; Scheers, B.; Vandenbosch, G.A.E. Eavesdropping a (ultra-)high-definition video display from an 80 meter distance under realistic circumstances. In Proceedings of the 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Reno, NV, USA, 27–31 July 2021. [Google Scholar]
- Levina, A.; Mostovoi, R.; Sleptsova, D.; Tcvetkov, L. Physical model of sensitive data leakage from PC-based cryptographic systems. J. Cryptogr. Eng. 2019, 9, 393–400. [Google Scholar] [CrossRef]
- Trip, B.; Butnariu, V.; Vizitiu, M.; Boitan, A.; Halunga, S. Analysis of Compromising Video Disturbances through Power Line. Sensors 2022, 22, 267. [Google Scholar] [CrossRef]
- Choi, D.H.; Lee, E.; Yook, J.G. Reconstruction of Video Information Through Leakaged Electromagnetic Waves from Two VDUs Using a Narrow Band-Pass Filter. IEEE Access 2022, 10, 40307–40315. [Google Scholar] [CrossRef]
- De Meulemeester, P.; Scheers, B.; Vandenbosch, G.A.E. A quantitative approach to eavesdrop video display systems exploiting multiple electromagnetic leakage channels. IEEE Trans. Electromagn. Compat. 2020, 62, 663–672. [Google Scholar] [CrossRef]
- Rubab, N.; Manzoor, N.; Nisa, T.; Hussain, I.; Amin, M. Repair of video frames received by eavesdropping from VGA cable transmission. In Proceedings of the 2018 15th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 9–13 January 2018. [Google Scholar]
- Guri, M.; Elovici, Y. Exfiltration of information from air-gapped machines using monitor’s LED indicator. In Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference, Washington, DC, USA, 24–26 September 2014; pp. 264–267. [Google Scholar]
- Ho Seong, L.; Jong-Gwan, Y.; Kyuhong, S. Analysis of information leakage from display devices with LCD. In Proceedings of the URSI Asia-Pacific Radio Science Conference 2016, Seoul, Korea, 21–25 August 2016. [Google Scholar]
- Jun, S.; Yongacoglu, A.; Sun, D.; Dong, W. Computer LCD recognition based on the compromising emanations in cyclic frequency domain. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Ottawa, ON, Canada, 25–29 July 2016; pp. 164–169. [Google Scholar]
- Kuhn, M.G. Electromagnetic eavesdropping risks of at-panel displays. In Proceedings of the 4th Workshop on Privacy Enhancing Technologies, Toronto, ON, Canada, 26–28 May 2004; pp. 88–105. [Google Scholar]
- Van Eck, W. Electromagnetic radiation from video display units: An eavesdropping risk? Comput. Secur. 1985, 4, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.G. Compromising Emanations: Eavesdropping Risks of Computer Displays; University of Cambridge Computer Laboratory: Cambridge, UK, 2003. [Google Scholar]
- Kuhn, M.G. Optical time-domain eavesdropping risks of CRT displays. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 12–15 May 2002; pp. 3–18. [Google Scholar]
- De Mulder, E.; Buysschaert, P.; Örs, S.B.; Delmotte, P.; Preneel, B.; Vandenbosch, G.; Verbauwhede, I. Electromagnetic analysis attack on an FPGA implementation of an elliptic curve cryptosystem. In Proceedings of the International Conference on Computer as a Tool (EUROCON), Belgrade, Serbia, 21–24 November 2005; pp. 1879–1882. [Google Scholar]
- Prvulovic, M.; Zajic, A.; Callan, R.L.; Wang, C.J. A method for finding frequency-modulated and amplitude-modulated electromagnetic emanations in computer systems. IEEE Trans. Electromagn. Compat. 2017, 59, 34–42. [Google Scholar] [CrossRef]
- Qin, M.; Li, D.; Tang, X.; Zeng, C.; Li, W.; Xu, L. A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform. Remote Sens. 2019, 11, 1669. [Google Scholar] [CrossRef]
- Granados-Lieberman, D.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A.; Franco-Gasca, L.A. A Real-Time Smart Sensor for High-Resolution Frequency Estimation in Power Systems. Sensors 2009, 9, 7412–7429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiner, L.; Schafer, R.; Rader, C. The Chirp-Z transform algorithm. IEEE Trans. Audio Electroacoust. 1969, 17, 86–92. [Google Scholar] [CrossRef]
- Aiello, M.; Cataliotti, A.; Nuccio, S. A Chirp-Z transform-based synchronizer for power system measurements. IEEE Trans. Instrum. Meas. 2005, 54, 1025–1032. [Google Scholar] [CrossRef]
- Draidi, J.A. Two-dimensional Chirp-Z transform and its application to zoom Wigner bispectrum. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 96), Atlanta, GA, USA, 15 May 1996. [Google Scholar]
- Boitan, A.; Kubiak, I.; Halunga, S.; Przybysz, A.; Stanczak, A. Method of colors and secure fonts in aspect of source shaping of valuable emissions from projector in electromagnetic eavesdropping process. Symmetry 2020, 12, 1908. [Google Scholar] [CrossRef]
- Genkin, D.; Pachmanov, L.; Pipman, I.; Tromer, E. Stealing keys from PCs using a radio: Cheap electromagnetic attacks on windowed exponentiation. In Proceedings of the Cryptographic Hardware and Embedded Systems (CHES)—Lecture Notes in Computer Science, Saint-Malo, France, 13–16 September 2015; Abstract No. 9293. pp. 207–228. [Google Scholar]
- Genkin, D.; Pachmanov, L.; Pipman, I.; Tromer, E.; Yarom, Y. Key extraction from mobile devices via nonintrusive physical side channels. In Proceedings of the SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016. [Google Scholar]
- Morales-Aguilar, S.; Kasmi, C.; Meriac, M.; Vega, F.; Alyafei, F. Digital Images Preprocessing for Optical Character Recognition in Video Frames Reconstructed from Compromising Electromagnetic Emanations from Video Cables. In Proceedings of the URSI GASS 2020, Rome, Italy, 29 August–5 September 2020. [Google Scholar]
- Kubiak, I.; Przybysz, A. Fourier and Chirp-Z Transforms in the Estimation Values Process of Horizontal and Vertical Synchronization Frequencies of Graphic Displays. Appl. Sci. 2022, 12, 5281. [Google Scholar] [CrossRef]
- Kubiak, I.; Przybysz, A. FFT and Chirp-Z Transforms as Methods of Determining Image Raster Parameters. In Proceedings of the 39th IBIMA Computer Science Conference, Granada, Spain, 30–31 May 2022. [Google Scholar]
- Bal, A. Comparison of selected contrast evaluation methods of grey level images. PAK 2010, 56, 501–503. [Google Scholar]
- Yadav, G.; Maheshwari, S.; Agarwal, A. Contrast Limited Adaptive Histogram Equalization Based Enhancement for Real Time Video System. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014. [Google Scholar] [CrossRef]
- Bartusica, R.; Boitan, A.; Fratu, O.; Mihai, M. Processing gain considerations on compromising emissions. In Proceedings of the Conference: Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies 2020, Constanta, Romania, 20–23 August 2020. [Google Scholar]
- Maxwell, M.; Funlade, S.; Lauder, D. Unintentional Compromising Electromagnetic Emanations from IT Equipment: A Concept Map of Domain Knowledge. Procedia Comput. Sci. 2022, 200, 1432–1441. [Google Scholar]
- Song, T.L.; Jong-Gwan, J. Study of jamming countermeasure for electromagnetically leaked digital video signals. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Gothenburg, Sweden, 1–4 September 2014. [Google Scholar]
- Efendioglu, H.S.; Asik, U.; Karadeniz, C. Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. In Proceedings of the International Conference on Innovations in Intelligent Systems and Applications (INISTA), Novi Sad, Serbia, 24–26 August 2020. [Google Scholar] [CrossRef]
- Kubiak, I. Laser printer as a source of sensitive emissions. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1354–1366. [Google Scholar]
- Kubiak, I. The Influence of the Structure of Useful Signal on the Efficacy of Sensitive Emission of Laser Printers. Measurement 2018, 119, 63–74. [Google Scholar] [CrossRef]
- Kubiak, I.; Przybysz, A.; Musial, S. Possibilities of electromagnetic penetration of displays of multifunction devices. Computers 2020, 9, 62. [Google Scholar] [CrossRef]
- Kubiak, I. LED printers and safe fonts as an effective protection against the formation of unwanted emission. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 4268–4279. [Google Scholar] [CrossRef]
- Przybysz, A.; Grzesiak, K.; Kubiak, I. Electromagnetic Safety of Remote Communication Devices—Videoconference. Symmetry 2021, 13, 323. [Google Scholar] [CrossRef]
- De Meulemeester, P.; Scheers, B.; Vandenbosch, A.E. Reconstructing Video Images in Color Exploiting Compromising Video Emanations. In Proceedings of the 2020 International Symposium on Electromagnetic Compatibility—EMC EUROPE, Rome, Italy, 23–25 September 2020. [Google Scholar] [CrossRef]
- Mao, J.; Liu, P.; Liu, J.; Shi, S. Identification of Multi-Dimensional Electromagnetic Information Leakage Using CNN. IEEE Access 2019, 7, 145714–145724. [Google Scholar] [CrossRef]
- Li, Y.; Fan, H.; Huang, W. The Application Of The Duffing Oscillator To Detect Electromagnetic Leakage Emitted By HDMI Cables. In Proceedings of the IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA, 26 July–13 August 2021. [Google Scholar] [CrossRef]
- VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT); Version 1.0, Revision 13; 8 February 2013, 39899 Balentine Drive, Suite 125, Newark, CA 94560. Available online: https://vesa.org/vesa-standards/ (accessed on 23 April 2022).
- Generalized Timing Formula Standard Version: 1.1 September 2, 1999, 39899 Balentine Drive, Suite 125 Newark, CA 94560. Available online: https://app.box.com/s/vcocw3z73ta09txiskj7cnk6289j356b/file/769079003152 (accessed on 9 January 2021).
- Zielinski, T.P. Cyfrowe Przetwarzanie Sygnałów, od Teorii do Zastosowan; Wydawnictwa Komunikacji Łacznosci (WKŁ): Warszawa, Poland, 2005. [Google Scholar]
- Yang, W.; Chen, J.; Zeng, C.C.; Wang, P.B.; Liu, W. A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform. Sensors 2016, 16, 2095. [Google Scholar] [CrossRef]
Operating Mode of Display | Total Number of Image Lines | Total Number of Pixels in Line | Pixel Frequency [MHz] | Horizontal Sync Frequency [kHz] |
---|---|---|---|---|
640 × 480/60 Hz | 525 | 800 | 25.175 | 31.500 |
800 × 600/60 Hz | 628 | 1056 | 40.000 | 37.789 |
1024 × 768/60 Hz | 806 | 1344 | 65.000 | 48.363 |
1280 × 1024/60 Hz | 1066 | 1688 | 108.000 | 63.981 |
1366 × 768/60 Hz | 798 | 1792 | 85.500 | 47.712 |
1440 × 900/60 Hz | 934 | 1904 | 106.500 | 55.935 |
1600 × 900/60 Hz | 1000 | 1800 | 108.000 | 60.000 |
1600 × 1200/60 Hz | 1250 | 2160 | 162.000 | 75.000 |
1920 × 1080/60 Hz | 1125 | 2200 | 148.500 | 67.500 |
2048 × 1152/60 Hz | 1200 | 2250 | 162.000 | 72.000 |
4096 × 2160/60 Hz | 2222 | 4176 | 556.744 | 133.320 |
Operating Mode of Display | Pixel Frequency [MHz] | Sampling Rate [MHz] | Vertical Synchronization Frequency [kHz] | Estimated Number of Pixels on the Line |
---|---|---|---|---|
640 × 480/60 Hz | 25.175 | 31.25 | 31.500 | 992.063492 |
800 × 600/60 Hz | 40.000 | 62.50 | 37.789 | 1653.920453 |
1024 × 768/60 Hz | 65.000 | 125.00 | 48.363 | 2584.620474 |
1280 × 1024/60 Hz | 108.000 | 125.00 | 63.981 | 1953.705006 |
1366 × 768/60 Hz | 85.500 | 125.00 | 47.712 | 2619.885983 |
1440 × 900/60 Hz | 106.500 | 125.00 | 55.935 | 2234.736748 |
1600 × 900/60 Hz | 108.000 | 125.00 | 60.000 | 2083.333333 |
1600 × 1200/60 Hz | 162.000 | 250.00 | 75.000 | 3333.333333 |
1920 × 1080/60 Hz | 148.500 | 250.00 | 67.500 | 3703.703704 |
2048 × 1152/60 Hz | 162.000 | 250.00 | 72.000 | 3472.222222 |
4096 × 2160/60 Hz | 556.744 | 1000.00 | 133.320 | 7500.750075 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
1940.00000 | 1.048164686 | 0.171849337 | 1.060336069 |
1941.00000 | 1.049776743 | 0.119365830 | 1.062373944 |
1942.00000 | 1.049735802 | 0.139908854 | 1.062203122 |
1943.00000 | 1.051995241 | 0.188569793 | 1.065041162 |
1944.00000 | 1.052210182 | 0.192791092 | 1.064795418 |
1945.00000 | 1.052829416 | 0.121851712 | 1.065092109 |
1946.00000 | 1.052688681 | 0.158177237 | 1.065244950 |
1947.00000 | 1.051619094 | 0.214366068 | 1.063806450 |
1948.00000 | 1.049786978 | 0.271374610 | 1.060929451 |
1949.00000 | 1.052517240 | 0.323367140 | 1.064339893 |
1950.00000 | 1.053200445 | 0.275619408 | 1.064837375 |
1951.00000 | 1.051567918 | 0.414920291 | 1.061684663 |
1952.00000 | 1.049485037 | 0.400918456 | 1.059254198 |
1953.00000 | 1.037366462 | 0.767506043 | 1.044102002 |
1954.00000 | 1.000000000 | 1.0000000000 | 1.000000000 |
1955.00000 | 1.047348422 | 0.493644052 | 1.056131455 |
1956.00000 | 1.047141157 | 0.644691877 | 1.056419155 |
1957.00000 | 1.048592009 | 0.401950907 | 1.058792679 |
1958.00000 | 1.056450148 | 0.212138173 | 1.068208858 |
1959.00000 | 1.057593941 | 0.155644607 | 1.069284736 |
1960.00000 | 1.058320646 | 0.238379927 | 1.070321655 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
1953.00000 | 1.128509473 | 0.566120922 | 1.161644722 |
1953.10000 | 1.125077246 | 0.653023969 | 1.156506634 |
1953.20000 | 1.111804856 | 0.721004505 | 1.140902316 |
1953.30000 | 1.084614271 | 0.737559398 | 1.108103242 |
1953.40000 | 1.057994333 | 0.781928282 | 1.075430869 |
1953.50000 | 1.028688182 | 0.901126094 | 1.037330328 |
1953.60000 | 1.000887981 | 0.978394555 | 1.001363711 |
1953.70000 | 1.000000000 | 1.000000000 | 1.000000000 |
1953.80000 | 1.029002734 | 0.891301582 | 1.037963837 |
1953.90000 | 1.059216350 | 0.768574468 | 1.076867933 |
1954.00000 | 1.087859994 | 0.737611028 | 1.112577813 |
1954.10000 | 1.118237845 | 0.713704346 | 1.149291304 |
1954.20000 | 1.128598549 | 0.639065344 | 1.161598042 |
1954.30000 | 1.134547185 | 0.583418923 | 1.168143186 |
1954.40000 | 1.135833227 | 0.521527077 | 1.169590253 |
1954.50000 | 1.139154108 | 0.468060194 | 1.173558018 |
1954.60000 | 1.139677432 | 0.468250119 | 1.174621645 |
1954.70000 | 1.139666297 | 0.455018006 | 1.174571631 |
1954.80000 | 1.140390043 | 0.428413640 | 1.175481883 |
1954.90000 | 1.140484687 | 0.393074530 | 1.175985356 |
1955.00000 | 1.139368448 | 0.364117297 | 1.175028425 |
Line Length | Method I (Sum of Maxima) | Method II | Metoda III (Sum of Differences) |
---|---|---|---|
1953.60000 | 1.045344705 | 0.918599075 | 1.057791609 |
1953.61000 | 1.035836988 | 0.941646937 | 1.046045117 |
1953.62000 | 1.025918923 | 0.958560487 | 1.033870678 |
1953.63000 | 1.017516193 | 0.961919126 | 1.022772399 |
1953.64000 | 1.008000429 | 0.975810652 | 1.010506707 |
1953.65000 | 1.000000000 | 1.000000000 | 1.000000000 |
1953.66000 | 1.011208110 | 0.967291820 | 1.014241796 |
1953.67000 | 1.019793217 | 0.955438795 | 1.025774315 |
1953.68000 | 1.027689048 | 0.951833806 | 1.035827903 |
1953.69000 | 1.037218222 | 0.949187890 | 1.047992901 |
1953.70000 | 1.046717893 | 0.906469611 | 1.059969100 |
1953.71000 | 1.056281933 | 0.857594455 | 1.071885512 |
1953.72000 | 1.064757077 | 0.809621956 | 1.082543259 |
1953.73000 | 1.073653297 | 0.781884035 | 1.093361485 |
1953.74000 | 1.084453742 | 0.757549886 | 1.107124989 |
1953.75000 | 1.092368347 | 0.751750310 | 1.117065296 |
1953.76000 | 1.101237747 | 0.730658207 | 1.127524804 |
1953.77000 | 1.109787987 | 0.709859467 | 1.138122764 |
1953.78000 | 1.119719462 | 0.694074240 | 1.149425577 |
1953.79000 | 1.128116828 | 0.683080621 | 1.159693137 |
1953.80000 | 1.137895429 | 0.663961201 | 1.171269710 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
1953.64000 | 1.048187262 | 0.915623630 | 1.059534942 |
1953.64100 | 1.044262886 | 0.916235266 | 1.054277716 |
1953.64200 | 1.041631830 | 0.916434232 | 1.051271446 |
1953.64300 | 1.037312926 | 0.919930878 | 1.045627570 |
1953.64400 | 1.033866686 | 0.934525411 | 1.041464350 |
1953.64500 | 1.030198361 | 0.938919246 | 1.036374972 |
1953.64600 | 1.026825279 | 0.947507949 | 1.032361616 |
1953.64700 | 1.022394026 | 0.950160831 | 1.026633816 |
1953.64800 | 1.010795953 | 0.972321603 | 1.012636526 |
1953.64900 | 1.000000000 | 1.000000000 | 1.000000000 |
1953.65000 | 1.019321412 | 0.957806288 | 1.023055066 |
1953.65100 | 1.025816751 | 0.953613261 | 1.031168699 |
1953.65200 | 1.029516429 | 0.944418448 | 1.036000312 |
1953.65300 | 1.032178839 | 0.932808407 | 1.039597046 |
1953.65400 | 1.036202500 | 0.927301835 | 1.044560539 |
1953.65500 | 1.039350884 | 0.922611393 | 1.048876620 |
1953.65600 | 1.043601856 | 0.917858314 | 1.053747198 |
1953.65700 | 1.046295619 | 0.923716761 | 1.057322951 |
1953.65800 | 1.049843757 | 0.929676533 | 1.061552111 |
1953.65900 | 1.052396430 | 0.928444048 | 1.064444484 |
1953.66000 | 1.056344321 | 0.917217201 | 1.069629776 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
1953.64800 | 1.047916111 | 0.935641173 | 1.058259911 |
1953.64810 | 1.045866003 | 0.938583270 | 1.055964922 |
1953.64820 | 1.044235234 | 0.939182184 | 1.053807690 |
1953.64830 | 1.041377507 | 0.940372774 | 1.050721324 |
1953.64840 | 1.037893358 | 0.944932482 | 1.046389275 |
1953.64850 | 1.033995046 | 0.949683987 | 1.042033777 |
1953.64860 | 1.029035439 | 0.955727409 | 1.035925529 |
1953.64870 | 1.022455419 | 0.964475896 | 1.028451424 |
1953.64880 | 1.012168637 | 0.982063340 | 1.015938894 |
1953.64890 | 1.000000000 | 1.000000000 | 1.000000000 |
1953.64900 | 1.012631982 | 0.993629075 | 1.016237858 |
1953.64910 | 1.024290681 | 0.969259970 | 1.030444519 |
1953.64920 | 1.031554070 | 0.955114020 | 1.038885860 |
1953.64930 | 1.035268598 | 0.950946954 | 1.043698597 |
1953.64940 | 1.037782052 | 0.945884230 | 1.046538757 |
1953.64950 | 1.040688961 | 0.941543461 | 1.049927018 |
1953.64960 | 1.043665760 | 0.938248529 | 1.053394416 |
1953.64970 | 1.046683975 | 0.938706310 | 1.056685953 |
1953.64980 | 1.049039529 | 0.936455406 | 1.059701974 |
1953.64990 | 1.051485682 | 0.931872176 | 1.062794201 |
1953.65000 | 1.053745460 | 0.930100766 | 1.065200570 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
1953.64880 | 1.013086475 | 0.973197155 | 1.017277661 |
1953.64881 | 1.011788450 | 0.976878333 | 1.015880656 |
1953.64882 | 1.010249475 | 0.980919918 | 1.013835042 |
1953.64883 | 1.008472139 | 0.982972986 | 1.011472461 |
1953.64884 | 1.006959072 | 0.983571872 | 1.009685116 |
1953.64885 | 1.005168782 | 0.985128258 | 1.007539716 |
1953.64886 | 1.003829303 | 0.990618646 | 1.005705414 |
1953.64887 | 1.002909545 | 0.994455820 | 1.004408195 |
1953.64888 | 1.002176329 | 0.997080878 | 1.003193154 |
1953.64889 | 1.001256571 | 0.995492216 | 1.002098442 |
1953.64890 | 1.000906804 | 0.990971881 | 1.001317763 |
1953.64891 | 1.000652899 | 0.993801349 | 1.000845247 |
1953.64892 | 1.000000000 | 0.997548870 | 1.000000000 |
1953.64893 | 1.001266935 | 1.000000000 | 1.001473312 |
1953.64894 | 1.002689321 | 0.997882382 | 1.003193154 |
1953.64895 | 1.004210161 | 0.993274186 | 1.005259312 |
1953.64896 | 1.006352809 | 0.987575802 | 1.008114954 |
1953.64897 | 1.008254506 | 0.989293565 | 1.010662433 |
1953.64898 | 1.010296110 | 0.989584043 | 1.013295023 |
1953.64899 | 1.011969811 | 0.988384478 | 1.015352377 |
1953.64900 | 1.013550241 | 0.984658474 | 1.017577019 |
Accuracy | Method I | Method II | Method III |
---|---|---|---|
1954.00000 | 1954.00000 | 1954.00000 | |
1953.70000 | 1953.70000 | 1953.70000 | |
1953.65000 | 1953.65000 | 1953.65000 | |
1953.64900 | 1953.64900 | 1953.64900 | |
1953.64890 | 1953.64890 | 1953.64890 | |
1953.64892 | 1953.64893 | 1953.64892 |
Accuracy | Method I | Method II | Method III |
---|---|---|---|
1954.00000 | 1954.00000 | 1954.00000 | |
1953.60000 | 1953.60000 | 1953.60000 | |
1953.65000 | 1953.65000 | 1953.65000 | |
1953.64800 | 1953.64800 | 1953.64900 | |
1953.64860 | 1953.64860 | 1953.64860 | |
1953.64858 | 1953.64857 | 1953.64858 |
Accuracy | Method I | Method II | Method III |
---|---|---|---|
3907.00000 | 3907.00000 | 3907.00000 | |
3907.30000 | 3907.30000 | 3907.30000 | |
3907.26000 | 3907.26000 | 3907.26000 | |
3907.26000 | 3907.26000 | 3907.26000 | |
3907.26020 | 3907.26020 | 3907.26020 | |
3907.26019 | 3907.26025 | 3907.26019 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
3285.00000 | 1.120522806 | 0.323730914 | 1.125336744 |
3286.00000 | 1.104016613 | 0.432052882 | 1.107925178 |
3287.00000 | 1.117467594 | 0.390075927 | 1.122010671 |
3288.00000 | 1.119587273 | 0.337887334 | 1.124127670 |
3289.00000 | 1.118140143 | 0.369545949 | 1.122608500 |
3290.00000 | 1.118529589 | 0.310561218 | 1.122985683 |
3291.00000 | 1.116974679 | 0.343311144 | 1.121372590 |
3292.00000 | 1.117172995 | 0.317745072 | 1.121700576 |
3293.00000 | 1.118140143 | 0.382540274 | 1.122656207 |
3294.00000 | 1.110786652 | 0.432827259 | 1.114915745 |
3295.00000 | 1.111799787 | 0.400781984 | 1.116100966 |
3296.00000 | 1.121648033 | 0.339014565 | 1.126334119 |
3297.00000 | 1.122117955 | 0.364968354 | 1.126641233 |
3298.00000 | 1.111444831 | 0.350635507 | 1.115793852 |
3299.00000 | 1.110217573 | 0.359650189 | 1.114538561 |
3300.00000 | 1.000000000 | 1.000000000 | 1.000000000 |
3301.00000 | 1.102570919 | 0.368348992 | 1.106411971 |
3302.00000 | 1.125029460 | 0.346655863 | 1.129843566 |
3303.00000 | 1.117453223 | 0.357396782 | 1.121740829 |
3304.00000 | 1.122641048 | 0.365919158 | 1.127259933 |
3305.00000 | 1.116596729 | 0.335950862 | 1.120998388 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
3299.00000 | 1.1102176 | 0.3596502 | 1.11453856 |
3299.10000 | 1.0960179 | 0.3559526 | 1.09968081 |
3299.20000 | 1.0931351 | 0.3773985 | 1.09668720 |
3299.30000 | 1.0919308 | 0.3524315 | 1.09542445 |
3299.40000 | 1.0796080 | 0.3579599 | 1.08254654 |
3299.50000 | 1.0537335 | 0.3713768 | 1.05579633 |
3299.60000 | 1.0645288 | 0.4302210 | 1.06709096 |
3299.70000 | 1.0535481 | 0.4144102 | 1.05553990 |
3299.80000 | 1.0476346 | 0.5481207 | 1.04929028 |
3299.90000 | 1.0113615 | 0.5532276 | 1.01169120 |
3300.00000 | 1.0000000 | 1.0000000 | 1.00000000 |
3300.10000 | 1.0389130 | 0.4809306 | 1.04041529 |
3300.20000 | 1.0481117 | 0.4251500 | 1.04971965 |
3300.30000 | 1.0519056 | 0.3952525 | 1.05394470 |
3300.40000 | 1.0758242 | 0.3835967 | 1.07886117 |
3300.50000 | 1.0900095 | 0.3816243 | 1.09338349 |
3300.60000 | 1.0937861 | 0.3704260 | 1.09732379 |
3300.70000 | 1.0913503 | 0.3250346 | 1.09486240 |
3300.80000 | 1.0933579 | 0.3877169 | 1.09676323 |
3300.90000 | 1.1046935 | 0.3532766 | 1.10863184 |
3301.00000 | 1.1025709 | 0.368349 | 1.10641197 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
3299.90000 | 1.1065329 | 0.1001021 | 1.11093412 |
3299.91000 | 1.1101728 | 0.1067478 | 1.11472726 |
3299.92000 | 1.0972044 | 0.1267683 | 1.10126874 |
3299.93000 | 1.0987343 | 0.1526061 | 1.10293858 |
3299.94000 | 1.0948727 | 0.2019888 | 1.09886386 |
3299.95000 | 1.0880725 | 0.2282842 | 1.09176380 |
3299.96000 | 1.0790475 | 0.2859177 | 1.08244385 |
3299.97000 | 1.0000000 | 1.0000000 | 1.00000000 |
3299.98000 | 1.0787582 | 0.3141782 | 1.08193471 |
3299.99000 | 1.0863917 | 0.2101435 | 1.09024131 |
3300.00000 | 1.0941023 | 0.1809419 | 1.09809606 |
3300.01000 | 1.1011415 | 0.1464637 | 1.10543350 |
3300.02000 | 1.0960991 | 0.1220722 | 1.10017353 |
3300.03000 | 1.1125737 | 0.1139609 | 1.11731877 |
3300.04000 | 1.1058521 | 0.1041928 | 1.11026128 |
3300.05000 | 1.1185217 | 0.1026445 | 1.12353644 |
3300.06000 | 1.1233377 | 0.1029948 | 1.12852465 |
3300.07000 | 1.1337793 | 0.0828789 | 1.13951116 |
3300.08000 | 1.1249540 | 0.0874667 | 1.13018303 |
3300.09000 | 1.1293297 | 0.0897860 | 1.13480126 |
3300.10000 | 1.1366771 | 0.0870205 | 1.14247593 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
3299.96000 | 1.0790475 | 0.2859177 | 1.08244385 |
3299.96100 | 1.0893115 | 0.2828917 | 1.09298834 |
3299.96200 | 1.0826559 | 0.3178542 | 1.08592266 |
3299.96300 | 1.0807959 | 0.3525624 | 1.08415788 |
3299.96400 | 1.0798509 | 0.3469921 | 1.08322147 |
3299.96500 | 1.0731183 | 0.3249460 | 1.07620654 |
3299.96600 | 1.0723102 | 0.3557852 | 1.07523902 |
3299.96700 | 1.0613827 | 0.4351092 | 1.06394637 |
3299.96800 | 1.0473719 | 0.5440873 | 1.04917491 |
3299.96900 | 1.0199148 | 0.7887994 | 1.02091219 |
3299.97000 | 1.0000000 | 1.0000000 | 1.00000000 |
3299.97100 | 1.0194950 | 0.7488153 | 1.02055039 |
3299.97200 | 1.0448578 | 0.5460046 | 1.04697629 |
3299.97300 | 1.0621484 | 0.4208681 | 1.06468142 |
3299.97400 | 1.0734092 | 0.3855616 | 1.07646356 |
3299.97500 | 1.0727976 | 0.3406400 | 1.07588403 |
3299.97600 | 1.0787566 | 0.3861485 | 1.08197400 |
3299.97700 | 1.0790318 | 0.3797313 | 1.08228669 |
3299.97800 | 1.0802943 | 0.3412574 | 1.08381409 |
3299.97900 | 1.0792503 | 0.3434442 | 1.08242420 |
3299.98000 | 1.0787582 | 0.3141782 | 1.08193471 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
3299.96900 | 1.0744817 | 0.3952254 | 1.07634270 |
3299.96910 | 1.0698641 | 0.4139846 | 1.07162301 |
3299.96920 | 1.0657144 | 0.4152352 | 1.06723052 |
3299.96930 | 1.0612688 | 0.4380820 | 1.06257508 |
3299.96940 | 1.0563131 | 0.4652010 | 1.05762680 |
3299.96950 | 1.0508035 | 0.4998636 | 1.05176865 |
3299.96960 | 1.0466946 | 0.5284766 | 1.04755096 |
3299.96970 | 1.0419517 | 0.5556020 | 1.04288506 |
3299.96980 | 1.0375221 | 0.6056936 | 1.03830581 |
3299.96990 | 1.0314907 | 0.6494630 | 1.03220413 |
3299.97000 | 1.0266283 | 0.6950076 | 1.02732160 |
3299.97010 | 1.0201611 | 0.7520679 | 1.02062379 |
3299.97020 | 1.0129796 | 0.8095374 | 1.01314162 |
3299.97030 | 1.0066961 | 0.9292102 | 1.00685767 |
3299.97040 | 1.0016150 | 0.9895628 | 1.00166138 |
3299.97050 | 1.0000000 | 1.0000000 | 1.00000000 |
3299.97060 | 1.0044368 | 0.9686088 | 1.00431331 |
3299.97070 | 1.0110148 | 0.9258592 | 1.01114856 |
3299.97080 | 1.0186860 | 0.8031710 | 1.01899678 |
3299.97090 | 1.0257275 | 0.7638585 | 1.02624140 |
3299.97100 | 1.0324483 | 0.6732079 | 1.03321411 |
Line Length | Method I (Sum of Maxima) | Method II | Method III (Sum of Differences) |
---|---|---|---|
3299.97040 | 1.0284502 | 0.5531938 | 1.02893843 |
3299.97041 | 1.0270844 | 0.5702378 | 1.02746142 |
3299.97042 | 1.0256717 | 0.5866089 | 1.02607795 |
3299.97043 | 1.0235286 | 0.6073334 | 1.02392526 |
3299.97044 | 1.0210823 | 0.6294182 | 1.02157992 |
3299.97045 | 1.0201479 | 0.6575501 | 1.02059153 |
3299.97046 | 1.0178256 | 0.6879719 | 1.01818755 |
3299.97047 | 1.0157749 | 0.7274403 | 1.01615493 |
3299.97048 | 1.0140921 | 0.7677313 | 1.01441128 |
3299.97049 | 1.0112378 | 0.8123110 | 1.01150752 |
3299.97050 | 1.0090989 | 0.8526606 | 1.00931994 |
3299.97051 | 1.0079936 | 0.8862900 | 1.00824359 |
3299.97052 | 1.0048416 | 0.9016767 | 1.00508715 |
3299.97053 | 1.0014099 | 0.8954113 | 1.00154960 |
3299.97054 | 1.0012321 | 0.944773 | 1.00135974 |
3299.97055 | 1.0007001 | 0.9693599 | 1.00079714 |
3299.97056 | 1.0000165 | 0.9993997 | 1.00006841 |
3299.97057 | 1.0000000 | 1.0000000 | 1.00000000 |
3299.97058 | 1.0005885 | 0.9666031 | 1.00065195 |
3299.97059 | 1.0024890 | 0.9549048 | 1.00262594 |
3299.97060 | 1.0038328 | 0.9534355 | 1.00399825 |
Accuracy | Method I | Method II | Method III |
---|---|---|---|
3300.00000 | 3300.00000 | 3300.00000 | |
3300.00000 | 3300.00000 | 3300.00000 | |
3299.97000 | 3299.97000 | 3299.97000 | |
3299.97000 | 3299.97000 | 3299.97000 | |
3299.97050 | 3299.97050 | 3299.97050 | |
3299.97057 | 3299.97057 | 3299.97057 |
Accuracy | Method I | Method II | Method III |
---|---|---|---|
3303.00000 | 3303.00000 | 3303.00000 | |
3303.20000 | 3303.20000 | 3303.20000 | |
3303.23000 | 3303.23000 | 3303.23000 | |
3303.22600 | 3303.22600 | 3303.22600 | |
3303.22640 | 3303.22630 | 3303.22640 | |
3303.22637 | 3303.22632 | 3303.22637 |
Accuracy | Method I | Method II | Method III |
---|---|---|---|
1863.00000 | 1863.00000 | 1863.00000 | |
1862.50000 | 1862.50000 | 1862.50000 | |
1862.54000 | 1862.54000 | 1862.54000 | |
1862.54200 | 1862.54200 | 1862.54200 | |
1862.54160 | 1862.54160 | 1862.54160 | |
1862.54155 | 1862.54158 | 1862.54155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, I.; Przybysz, A. Measurements and Correctness Criteria for Determining the Line Length of the Data Image Obtained in the Process of Electromagnetic Infiltration. Appl. Sci. 2022, 12, 10384. https://doi.org/10.3390/app122010384
Kubiak I, Przybysz A. Measurements and Correctness Criteria for Determining the Line Length of the Data Image Obtained in the Process of Electromagnetic Infiltration. Applied Sciences. 2022; 12(20):10384. https://doi.org/10.3390/app122010384
Chicago/Turabian StyleKubiak, Ireneusz, and Artur Przybysz. 2022. "Measurements and Correctness Criteria for Determining the Line Length of the Data Image Obtained in the Process of Electromagnetic Infiltration" Applied Sciences 12, no. 20: 10384. https://doi.org/10.3390/app122010384
APA StyleKubiak, I., & Przybysz, A. (2022). Measurements and Correctness Criteria for Determining the Line Length of the Data Image Obtained in the Process of Electromagnetic Infiltration. Applied Sciences, 12(20), 10384. https://doi.org/10.3390/app122010384