Ultrasound-Assisted Extraction of an Extract with Dermatological and Nosocomial Activity from Agave nuusaviorum, a Mexican Endemic Plant
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Extract
2.3. Microorganisms
2.4. Antimicrobial Assay
2.5. Minimum Inhibitory Concentration (MIC) and Minimum Microbicidal Concentration (MMC)
2.6. Phytochemical Screening
2.7. Data Analysis
3. Results
3.1. Antimicrobial Assay
3.2. Minimum Inhibitory Concentration and Minimum Microbicidal Concentration
3.3. Phytochemical Screening
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chemat, F.; Strube, J. Green Extraction of Natural Products: Theory and Practice, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015. [Google Scholar]
- Chemat, F.; Albert-Vian, M.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Rombaut, N.; Tixier, A.S.; Bily, A.; Chemat, F. Green extraction processes of natural products as tools for biorefinery. Biofuelsbioprod. Biorefin. 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Albert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.C.; Kumari, R.; Yadav, J.P. Comparative antidandruff efficacy of plant extracts prepared from conventional and supercritical fluid extraction method and chemical profiling using GCMS. J. Dermatol. Treat. 2022, 33, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Ponce-Alquicira, E. Environmentally friendly techniques and their comparison in the extraction of natural antioxidants from green tea, rosemary, clove, and oregano. Molecules 2021, 26, 1869. [Google Scholar] [CrossRef] [PubMed]
- Hasni, S.; Rigane, G.; Ghazghazi, H.; Riguene, H.; Bouallegue, A.; Khedher, O.; Oueslati, M.A.; Ben Salem, R. Optimum Conditions and LC-ESI-MS Analysis of Phenolic Rich Extract from Eucalyptus marginata L. Under Maceration and Ultrasound-Assisted Extraction Methods Using Response Surface Methodology. J. Food Qual. 2021, 2021, 5591022. [Google Scholar] [CrossRef]
- Ilkit, M.; Durdu, M. Tinea pedis: The etiology and global epidemiology of a common fungal infection. Crit. Rev. Microbiol. 2015, 41, 374–388. [Google Scholar] [CrossRef]
- Asz-Sigall, D.; Tosti, A.; Arenas, R. Tinea Unguium: Diagnosis and Treatment in Practice. Mycopathologia 2017, 182, 95–100. [Google Scholar] [CrossRef]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida Species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef] [Green Version]
- Tóth, R.; Nosek, J.; Mora-Montes, H.M.; Gabaldon, T.; Bliss, J.M.; Nosanchuk, J.D.; Turner, S.A.; Butler, G.; Vágvölgyi, C.; Gácser, A. Candida parapsilosis: From genes to the bedside. Clin. Microbiol. Rev. 2019, 32, 1–38. [Google Scholar] [CrossRef]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar] [PubMed]
- Hu, D.L.; Wang, L.; Fang, R.; Okamura, M.; Ono, H.K. Staphylococcus aureus enterotoxins. In Staphylococcus aureus; Elsevier: London, UK, 2018; pp. 39–55. [Google Scholar]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; The Review on Antimicrobial Resistance: London, UK, 2016; pp. 1–80. [Google Scholar]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. In. 2017, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogan, D.M.; Mossialos, E. A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Glob. Health 2016, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- García-Mendoza, A.J. Revisión taxonómica del complejo Agave potatorum Zucc. (Agavaceae): Nuevos taxa y neotipificación. Acta Bot. Mex. 2010, 91, 71–93. [Google Scholar] [CrossRef] [Green Version]
- García-Mendoza, A.J. Agavaceae. In Flora del Valle Tehuacán-Cuicatlán, Instituto de Biología; Universidad Nacional Autónoma de México: Mexico City, México, 2011; Fasciculo 88; p. 95. [Google Scholar]
- Chávez-Ruiz, P. Evaluación de la Actividad Antifúngica de Extractos de Agave nussaviorum Obtenidos Con el uso de Energías Alternas. Master’s Thesis, CIIDIR, Oaxaca, Instituto Politécnico Nacional, Mexico City, México, 2015. [Google Scholar]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Koneman, E.; Allen, S. Konemanʹs Color Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am. Soc. Microbiol. 2009, 15, 55–63. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, 2nd ed.; CLSI Document M44-A2; CLSI: Wayne, PA, USA, 2009; pp. 1–23. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically, 9th ed.; CLSI Document M07-A9; CLSI: Wayne, PA, USA, 2012; pp. 1–70. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI Document M27-A3; CLSI: Wayne, PA, USA, 2008; pp. 1–27. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; CLSI Document M38-A2; CLSI: Wayne, PA, USA, 2008; pp. 1–37. [Google Scholar]
- Wagner, H.; Bladt, S. Plant Drug Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–357. [Google Scholar]
- Brückner, J. Estimation of monosaccharides by the orcinol-sulphuric acid reaction. Biochem. J. 1955, 60, 200–205. [Google Scholar] [CrossRef]
- Ejikeme, C.M.; Ezeonu, C.S.; Eboatu, A.N. Determination of physical and phytochemical constituents of some tropical timbers indigenous to niger delta area of Nigeria. Eur. Sci. J. 2014, 10, 247–270. [Google Scholar]
- Funari, C.S.; Carneiro, R.L.; Andrade, A.M.; Hilder, E.F.; Cavalheiro, A.J. Green chromatographic fingerprinting: An environmentally friendly approach for the development of separation methods for fingerprinting complex matrices. J. Sep. Sci. 2014, 37, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Hejazikhah, M.; Jamshidi, P. ILSnCl2-mGO nanocomposite for efficient preconcentration of Red 2G via ultrasonic-assisted dispersive magnetic solid-phase extraction method: Isotherm adsorption. Res. Chem. Intermediat. 2022, 48, 4269–4286. [Google Scholar] [CrossRef]
- Jamshidi, P.; Ghanbari, D.; Salavati-Niasari, M. Sonochemical synthesis of La(OH)3 nanoparticle and its influence on the flame retardancy of cellulose acetate nanocomposite. J. Ind. Eng. Chem. 2014, 20, 3507–3512. [Google Scholar] [CrossRef]
- Jamshidi, P.; Salavati-Niasari, M.; Ghanbari, D.; Shams, H.R. Synthesis, Characterization, Photoluminescence and Photocatalytic Properties of CeO2 Nanoparticles by the Sonochemical Method. J. Clust. Sci. 2013, 24, 1151–1162. [Google Scholar] [CrossRef]
- Ríos, J.; Recio, M. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Verástegui, Á.; Verde, J.; García, S.; Heredia, N.; Oranday, A.; Rivas, C. Species of Agave with antimicrobial activity against selected pathogenic bacteria and fungi. World J. Microb. Biot. 2008, 24, 1249–1252. [Google Scholar] [CrossRef]
- Hammuel, C.; Yebpella, G.G.; Shallangwa, G.A.; Magomya, A.M.; Agbaji, A.S. Phytochemical and antimicrobial screening of methanol and aqueous extracts of Agave sisalana. Acta Pol. Pharm. 2011, 68, 535–539. [Google Scholar] [PubMed]
- Ade-Ajayi, A.F.; Hammuel, C.; Ezeayanaso, C.; Ogabiela, E.E.; Udiba, U.U.; Anyim, B.; Olabanji, O. Preliminary phytochemical and antimicrobial screening of Agave sisalana Perrine juice (waste). J. Environ. Chem. Ecotoxicol. 2011, 3, 180–183. [Google Scholar]
- Shazadi, K.; Arshad, N.; Ambreen, H.S.; Riaz, A.; Mehreen, A. In vivo studies could not confirm in vitro prophylactic synergism between Moringa essential oil and Lactobacillus reuteri (MT180537). Braz. J. Biol. 2022, 84, 1–10. [Google Scholar] [CrossRef]
- Carrillo-Lomelí, D.A.; Jasso de Rodríguez, D.; Moo-Huchin, V.M.; Ramón-Canul, L.; Rodríguez-García, R.; González-Morales, S.; Villarreal-Quintanilla, J.A.; Peña-Ramos, F.M. How does Flourensia microphylla extract affect polyphenolic composition, antioxidant capacity, and antifungal activity? Ind. Crops Prod. 2022, 186, 1–11. [Google Scholar] [CrossRef]
- Santos-Zea, L.; Leal-Diaz, A.; Cortes-Ceballos, E.; Gutierrez-Uribe, J. Agave (Agave spp.) and its Traditional Products as a Source of Bioactive Compounds. Curr. Bioact. Compd. 2012, 8, 218–231. [Google Scholar] [CrossRef]
- Kuźma, L.; Rózalski, M.; Walencka, E.; Rózalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 2007, 14, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Walencka, E.; Rozalska, S.; Wysokinska, H.; Rozalski, M.; Kuzma, L.; Rozalska, B. Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 2007, 73, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Merghni, A.; Marzouki, H.; Hentati, H.; Aouni, M.; Mastouri, M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Transl. Med. 2016, 64, 29–34. [Google Scholar] [CrossRef]
- Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.M.; Imbert, C. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents 2008, 31, 572–576. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol. 2017, 76, 76–83. [Google Scholar] [CrossRef]
Microorganism | ADM | MIC (mg/mL) | MMC (mg/mL) |
---|---|---|---|
Bacterium | |||
Staphylococcus aureus | ++ | 0.5 | 1 |
Yeast | |||
Candida albicans | ++ | 1 | 1 |
Candida parapsilosis | + | 0.25 | 1 |
Molds | |||
Trichophyton mentagrophytes CFQ-H-92 | +++ | 0.75 | 1 |
Trichophyton rubrum CFQ-H-93 | +++ | 1 | 1 |
Trichophyton rubrum FM309 | ++ | 0.75 | 0.75 |
Trichophyton rubrum FM626 | ++ | 0.75 | 0.75 |
Trichophyton rubrum FM774 | +++ | 0.4 | 0.4 |
Trichophyton rubrum FM794 | + | 1 | 1 |
Trichophyton mentagrophytes FM796 | +++ | 1 | 1 |
Trichophyton rubrum FM932 | +++ | 1.25 | 1.25 |
Trichophyton rubrum FM934 | ++ | 0.5 | 1 |
Trichophyton rubrum FM941 | ++ | 1 | 1.25 |
Trichophyton rubrum FM943 | ++ | 1 | 1 |
Compounds | Extract |
---|---|
Saponins | --- |
Phenolic acids | + |
Tannins | + |
Carbohydrates | ++ |
Terpenes | ++ |
Steroids | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sánchez, E.; Chávez-Ruiz, P.; Hernández-Gama, R.; Solano-Gómez, R.; Lagunez-Rivera, L. Ultrasound-Assisted Extraction of an Extract with Dermatological and Nosocomial Activity from Agave nuusaviorum, a Mexican Endemic Plant. Appl. Sci. 2022, 12, 10446. https://doi.org/10.3390/app122010446
García-Sánchez E, Chávez-Ruiz P, Hernández-Gama R, Solano-Gómez R, Lagunez-Rivera L. Ultrasound-Assisted Extraction of an Extract with Dermatological and Nosocomial Activity from Agave nuusaviorum, a Mexican Endemic Plant. Applied Sciences. 2022; 12(20):10446. https://doi.org/10.3390/app122010446
Chicago/Turabian StyleGarcía-Sánchez, Edgar, Priscila Chávez-Ruiz, Regina Hernández-Gama, Rodolfo Solano-Gómez, and Luicita Lagunez-Rivera. 2022. "Ultrasound-Assisted Extraction of an Extract with Dermatological and Nosocomial Activity from Agave nuusaviorum, a Mexican Endemic Plant" Applied Sciences 12, no. 20: 10446. https://doi.org/10.3390/app122010446
APA StyleGarcía-Sánchez, E., Chávez-Ruiz, P., Hernández-Gama, R., Solano-Gómez, R., & Lagunez-Rivera, L. (2022). Ultrasound-Assisted Extraction of an Extract with Dermatological and Nosocomial Activity from Agave nuusaviorum, a Mexican Endemic Plant. Applied Sciences, 12(20), 10446. https://doi.org/10.3390/app122010446