Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of CaS Clusters and Nanostructures: Microwave Decomposition of Dimethyl Sulfoxide in the Presence of Calcium Ions
2.2. Characterization of CaS Nanostructures
2.3. Cell Culturing
2.4. Treatment of Cell Cultures with CaS Clusters and/or Nanostructures
2.5. Trypan Blue Viability Assays
2.6. Annexin-V FITC Apoptosis Assay
2.7. Cell Cycle Assay
3. Results
3.1. Synthesis and Characterization of CaS Nanoclusters
3.1.1. Effect of CaS in Human Carcinoma Cells
3.1.2. Effect of CaS Clusters in Human Carcinoma Cell Density
3.1.3. Effect of CaS Nanostructures (NS) in Carcinoma Cells
3.1.4. Effect of CaS Nanoclusters on Normal Human Fibroblasts
3.2. Effects of CaS Nanoclusters on Cell Cycle Progression
3.3. CaS Nanoclusters and Cell Survival
3.4. Interaction of CaS with Relevant Biological Functional Groups
4. Discussion
5. Conclusions
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Billone, P.S.; Mullett, W.M. Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. J. Nanomater. 2013, 2013, e629681. [Google Scholar] [CrossRef] [Green Version]
- Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for Targeted Cancer Therapy: Towards the Overcoming of Drug Resistance. Drug Resist. Updates 2011, 14, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-Based Combinational Drug Delivery: An Emerging Approach for Cancer Therapy. Drug Discov. Today 2012, 17, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-M.J.; Aryal, S.; Zhang, L. Nanoparticle-Assisted Combination Therapies for Effective Cancer Treatment. Ther. Deliv. 2010, 1, 323–334. [Google Scholar] [CrossRef]
- Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer Nanotechnology: The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Ipe, B.I.; Bawendi, M.G.; Frangioni, J.V. Renal Clearance of Nanoparticles. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lehn, R.C.; Atukorale, P.U.; Carney, R.P.; Yang, Y.-S.; Stellacci, F.; Irvine, D.J.; Alexander-Katz, A. Effect of Particle Diameter and Surface Composition on the Spontaneous Fusion of Monolayer-Protected Gold Nanoparticles with Lipid Bilayers. Nano Lett. 2013, 13, 4060–4067. [Google Scholar] [CrossRef] [Green Version]
- Cucherat, M.; Haugh, M.C.; Gooh, M. Evidence for clinical efficacy of homeopathy: A meta-analysis of clinical trials. In Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews; Centre for Reviews and Dissemination: York, UK, 1995. [Google Scholar]
- Calcium—QuickFacts. Available online: http://ods.od.nih.gov/factsheets/Calcium-QuickFacts/ (accessed on 10 October 2013).
- Shin, S.I.; Masuda, H.; Naohide, K. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int. J. Food Microbiol. 2004, 49, 255. [Google Scholar] [CrossRef]
- Kashfi, K.; Olson, K.R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol. 2013, 85, 689–703. [Google Scholar] [CrossRef] [Green Version]
- Szabó, C. Hydrogen sulphide and its theraupetic potential. Nat. Rev. Drug Discov. 2007, 6, 917–935. [Google Scholar] [CrossRef]
- Arya, H.; Kaul, Z.; Wadhwa, R.; Taira, K.; Hirano, T.; Kaul, S.C. Quantum Dots in Bio-imaging: Revolution by the Small. Biochem. Biophys. Res. Commun. 2005, 329, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Maysinger, D. Gold Nanoparticles and Quantum Dots for Bioimaging. Microsc. Res. Tech. 2011, 74, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Maysinger, D. Gold-nanoparticle-based Biosensors for Detection of Enzyme Activity. Trends Pharmacol. Sci. 2013, 34, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zrazhevskiy, P.; Sena, M.; Gao, X. Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery. ChemSoc. Rev. 2010, 39, 4326–4354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zrazhevskiy, P.; Gao, X. Quantum Dot Imaging Platform for Single-cell Molecular Profiling. Nat. Commun. 2013, 4, 1619. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Nanobiotechnology: Quantum Dots in Bioimaging. Expert Rev. Proteomics. 2007, 4, 565–572. [Google Scholar] [CrossRef]
- Martínez Maestro, L.; Jacinto, C.; Rocha, U.; Carmen Iglesias-de la Cruz, M.; Sanz-Rodriguez, F.; Juarranz, A.; García Solé, J.; Jaque, D. Optimum Quantum Dot Size for Highly Efficient Fluorescence Bioimaging. J. Appl. Phys. 2012, 111, 023513. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Muñoz Javier, A.; Gaub, H.E.; Stölzle, S.; Fertig, N.; Parak, W.J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano. Lett. 2005, 5, 331–338. [Google Scholar] [CrossRef]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots Versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Giraud, G.; Schulze, H.; Bachmann, T.T.; Campbell, C.J.; Mount, A.R.; Ghazal, P.; Khondoker, M.R.; Ross, A.J.; Ember, S.W.J.; Ciani, I.; et al. Fluorescence Lifetime Imaging of Quantum Dot Labeled DNA Microarrays. Int. J. Mol. Sci. 2009, 10, 1930–1941. [Google Scholar] [CrossRef]
- Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-quantum-dot Photovoltaics Using Atomic-ligand Passivation. Nat. Mater 2011, 10, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Kamat, P.V. Graphene−Semiconductor Nanocomposites: Excited-State Interactions Between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25, 13869–13873. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.B.; Yildirimer, L.; Ghaderi, S.; Ramesh, B.; Seifalian, A.M.; Keshtgar, M. A Novel POSS-coated Quantum Dot for Biological Application. Int. J. Nanomed. 2012, 7, 3915–3927. [Google Scholar]
- Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Synthesis of Mercaptosuccinic acid/MercaptoPolyhedralOligomericSilsesquioxane Coated Cadmium Telluride Quantum Dots in Cell Labeling Applications. J. Nanosci. Nanotechnol. 2012, 12, 4928–4935. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Fluorescence Nanoparticles “Quantum Dots” as Drug Delivery System and Their Toxicity: A Review. J. Drug Target. 2011, 19, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.; Nater, S.; Rivera, D.; Colon, J.M.; Zayas, F.; Gonzalez, M.; Castro, M.E. Turning “on” and “off” nucleation and growth: Microwave assisted synthesis of CdS clusters and nanoparticles. Mater. Res. Bull. 2012, 47, 3835–3843. [Google Scholar] [CrossRef]
- Rivera-Vazquez, D.; Santiago-Rodriguez, Y.; González, M.A.; Castro, M.E. Quantum Confinement Effects in Calcium Sulfide: The Role of Indirect Transitions in the Red Shift of the Band Edge in Semiconductor Nanoparticles. MRS Online Proc. Library 2014, 1694, 7–64. [Google Scholar] [CrossRef]
- Leon-Velazquez, M.S.; Irizarry, R.; Castro-Rosario, M.E. Nucleation and Growth of Silver Sulfide Nanoparticles. J. Phys. Chem. C 2010, 114, 5839–5849. [Google Scholar] [CrossRef]
- Takano, S.; Yamamoto, S.; Saito, S. Millimeter wave spectra of MgS and CaS. Chem. Phys. Lett. 1989, 159, 563–566. [Google Scholar] [CrossRef]
- Jarman, C.N.; Hailey, R.A.; Bernath, P.F. A laser study of the blue electronic transitions of CaS. J. Chem. Phys. 1992, 96, 5571. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tang, K.; Yang, Q.; An, C.; Hai, B.; Shen, G.; Qian, Y. Blue-light emission of nanocrystalline CaS and SrS synthesized via a solvothermal route. Chem. Phys. Lett. 2002, 351, 385–390. [Google Scholar] [CrossRef]
- Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M.; Muhammed, M. Semiconductor Quantum Dots as Fluorescent Probes for in Vitro and in Vivo Bio-Molecular and Cellular Imaging. Nano Rev. 2010, 1, 5161. [Google Scholar] [CrossRef] [PubMed]
- Lundblad, R.L.; MacDonald, F.M. Handbook of Biochemistry and Molecular Biology, 4th ed; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Griffiths, J.R. Are Cancer Cells Acidic? Br. J. Cancer 1991, 64, 425–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, A.K. Dynamics of Tumor Growth; Argonne National Laboratory: Lemont, IL, USA, 1964. [Google Scholar]
- Ye, L.; Yong, K.-T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W.-C.; Liu, J.; Wang, K.; et al. A Pilot Study in Non-human Primates Shows No Adverse Response to Intravenous Injection of Quantum Dots. Nat. Nanotechnol. 2012, 7, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum Dots: Synthesis, Bioapplications, and Toxicity. Nanoscale Res. Lett. 2012, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hardman, R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environ. Health Perspect 2006, 114, 165–172. [Google Scholar] [CrossRef]
- Roberts, J.R.; Antonini, J.M.; Porter, D.W.; Chapman, R.S.; Scabilloni, J.F.; Young, S.-H.; Schwegler-Berry, D.; Castranova, V.; Mercer, R.R. Lung Toxicity and Biodistribution of Cd/Se-ZnS Quantum Dots with Different Surface Functional Groups after Pulmonary Exposure in Rats. Part. Fibre. Toxicol. 2013, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Kümmerer, K.; Menz, J.; Schubert, T.; Thielemans, W. Biodegradability of Organic Nanoparticles in the Aqueous Environment. Chemosphere 2011, 82, 1387–1392. [Google Scholar] [CrossRef]
- Chuev, M.; Cherepanov, V.; Nikitin, M.P.; Polikarpov, M. Biodegradation of Nanoparticles in a Body from Mössbauer and Magnetization Measurements. Solid State Phenom. 2012, 190, 725–728. [Google Scholar] [CrossRef]
- Chan, W.; Shiao, N. Cytotoxic Effect of CdSe Quantum Dots on Mouse Embryonic Development. Acta Pharmacol. Sin. 2008, 29, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Hillen, F.; Griffioen, A.W. Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007, 26, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-D.; Huang, L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol. Pharm. 2008, 5, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Hernández, Y.; Cabal, C.; González, E.; Veintemillas-Verdaguer, S.; Martínez, E.; Morales, M.P. Biodistribution and Pharmacokinetics of Uniform Magnetite Nanoparticles Chemically Modified with Polyethylene Glycol. Nanoscale 2013, 5, 11400–11408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Leon, J.; Martin, M.; Harder, J.W.; Zhang, R.; Liang, D.; Lu, W.; Tian, M.; Gelovani, J.G.; Qiao, A.; et al. Pharmacokinetics and Biodistribution of Near-infrared Fluorescence Polymeric Nanoparticles. Nanotechnology 2009, 20, 165101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvizo, R.R.; Miranda, O.R.; Moyano, D.F.; Walden, C.A.; Giri, K.; Bhattacharya, R.; Robertson, J.D.; Rotello, V.M.; Reid, J.M.; Mukherjee, P. Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE 2011, 6, e24374. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.P.; Chan, S.L. Calcium Orchestrates Apoptosis. Nat. Cell Biol. 2003, 5, 1041–1043. [Google Scholar] [CrossRef] [Green Version]
- Pörn-Ares, M.I.; Ares, M.P.; Orrenius, S. Calcium signalling and the regulation of apoptosis. Toxicol In Vitro 1998, 12, 539–543. [Google Scholar] [CrossRef]
- Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I. The NBS Tables of Chemical Thermodynamic Properties; American Chemical Society and American Institute of Physics: Washington, DC, USA, 1982. [Google Scholar]
- Gerweck, L.E.; Setharman, K. Cellular Ph Gradient in Tumor vs. Normal Tissue: Potential Exploitation for the Treatment of Cancer. Cancer Res. 1996, 56, 1194–1198. [Google Scholar]
- Schwarz, E.C.; Qu, B.; Hoth, M. Calcium, cancer and killing: The role of calcium in killing cancer cells by cytoxic Tlymphocytes and natural killer cells. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1603–1611. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.M.; Christian, W.; Wu, M.H.; Chen, T.L.; Lin, Y.W.; Suen, C.S.; Pidugu, H.M.; Detroja, D.; Shah, A.; Hwang, M.J.; et al. Novel indolizino[8,7-b]indole hybrids as anti-small cell lung cancer agents: Regioselective modulation of topoisomerase II inhibitory and DNA crosslinking activities. Eur. J. Med. Chem. 2017, 127, 235–249. [Google Scholar] [CrossRef]
- Williams, G.H.; Stoeber, K. The Cell Cycle and Cancer. J. Pathol. 2011, 226, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, B.; Xie, Q.; Ye, D.; Zhang, D.; Zhu, Y.; Chen, H.; Zhu, B. STIM1 Mediates Hypoxia-Driven Hepatocarcinogenesis via Interaction with HIF-1. Cell Rep. 2015, 12, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wei, H.; Kong, G.; Shim, W.; Zhang, G. Hydrogen sulfide augments the proliferation and survival of human induced pluripotent stem cell–derived mesenchymal stromal cells through inhibition of BKCa. Cytotherapy 2013, 15, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Xiao, C.S.; Hui, R.T. Calcium sulfide (CaS), a donor of hydrogen sulfide (H(2)S): A new antihypertensive drug? Med. Hypotheses 2009, 73, 445–447. [Google Scholar] [CrossRef]
- Chen, C.H.; Su, S.J.; Chang, K.L.; Huang, M.W.; Kuo, S.Y. The garlic ingredient diallyl sulfide induces Ca(2+)mobilization in Madin-Darby canine kidney cells. Food Chem. Toxicol. 2009, 47, 2344–2350. [Google Scholar] [CrossRef]
- Markova, J.; Hudecova, S.; Soltysova, A.; Sirova, M.; Csaderova, L.; Lencesova, L.; Ondrias, K.; Krizanova, O. Sodium/calcium Exchanger Is Upregulated by Sulfide Signaling, Forms Complex with the β1 and β3 but Not β2 Adrenergic Receptors, and Induces Apoptosis. Pflugers Arch. 2014, 466, 1329–1342. [Google Scholar] [CrossRef]
- Rizzuto, R.; Pinton, p.; Ferrari,, D.; Chami, M.; Szabadkai,, G.; Magalhães,, P.J.; Di Virgilio, F.; Pozzan , T. Calcium and apoptosis: Facts and hypotheses. Oncogene. 2003, 22, 8619–8627. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Hong, J.; Xiao, J.; Zhu, X.; Ni, X.; Zhang, Y.; He, B.; Wang, Z. Involvement ofmiR-1 in the protective effect of hydrogen sulfide against cardiomyocyteapoptosis induced by ischemia/reperfusion. Mol. Biol. Rep. 2014, 41, 6845–6853. [Google Scholar] [CrossRef]
- Lv, M.; Li, Y.; Ji, M.H.; Zhuang, M.; Tang, J.H. Inhibition of invasion andepithelial-mesenchymal transition of human breast cancer cells by hydrogen sulfide through decreased phospho-p38 expression. Mol. Med. Rep. 2014, 10, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.J.; Xu, J.H.; Li, M.H.; Tang, J.P.; Zou, W.; Zhang, P.; Wang, L.; Wang, C.Y.; Tang, X.Q. Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway. Acta Pharmacol. Sin. 2014, 35, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Olas, B. Hydrogen sulfide in hemostasis: Friend or foe? Chem. Biol. Interact. 2014, 217, 49–56. [Google Scholar] [CrossRef] [PubMed]
Ca(CH3CO2)2/DMSO × 10−4 ratio: | (d ± σ) nm |
4 | smaller than 0.8 nm |
6 | (1.1 ± 0.2) |
System | Interaction Energy (kJ/mol) | CaS—Functional Group Minimum Distance (Å) | Ca-S Bond Length (Å) |
---|---|---|---|
−54.24167478 | 3.07175 | 2.59163 | |
−122.8815391 | 2.31069 | 2.59771 | |
−120.4922772 | 2.47496 | 2.59496 | |
−133.5407041 | 2.28822 | 2.60250 | |
−415.7639143 | 2.25230 | 2.80005 | |
−368.7580388 | carboxylic acid: 2.10608 aromatic ring: 3.17687 | 2.72777 | |
−199.9517525 | 3.00130 | 2.54327 | |
−399.4134555 | 2.42681 | 2.65120 |
Sample | ln[N (t = 0) ± σN | α ± σα |
---|---|---|
Carcinoma treated | 4.8 ± 0.6 (4.6 ± 0.3) | −0.06 ± 0.08 (−0.09 ± 0.1) |
Carcinoma untreated | 2.694 ± 0.002 (2.8 ± 0.1) | 0.4808 ± 0.000 (0.45 ± 0.03) |
Fibroblast treated | 3.4 ± 0.2 (2.6 ± 0.8) | 0.22 ± 0.07 (0.4 ± 0.2) |
Fibroblast untreated | 2.4 ± 0.4 (2.4 ± 0.3) | 0.6 ± 0.1 (0.49 ± 0.09) |
Species | |
---|---|
Ca2+ | −553.6 |
S2− | 85.8 |
H+ | 0 |
CaS | −477.4 |
H2S | −33.6 |
Thermodynamics in water ((kJ/mol)) | |
CaS(aq) → Ca2+(aq) + S2−(aq) | 9.62 |
CaS(s) + 2H+ → Ca2+(aq) + H2S(g) | −109.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera Vazquez, D.; Munoz Forti, K.; Figueroa Rosado, M.M.; Gutierrez Mirabal, P.I.; Suarez-Martinez, E.; Castro-Rosario, M.E. Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro. Appl. Sci. 2022, 12, 10494. https://doi.org/10.3390/app122010494
Rivera Vazquez D, Munoz Forti K, Figueroa Rosado MM, Gutierrez Mirabal PI, Suarez-Martinez E, Castro-Rosario ME. Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro. Applied Sciences. 2022; 12(20):10494. https://doi.org/10.3390/app122010494
Chicago/Turabian StyleRivera Vazquez, Daniel, Kevin Munoz Forti, Maria M. Figueroa Rosado, Pura I. Gutierrez Mirabal, Edu Suarez-Martinez, and Miguel E. Castro-Rosario. 2022. "Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro" Applied Sciences 12, no. 20: 10494. https://doi.org/10.3390/app122010494
APA StyleRivera Vazquez, D., Munoz Forti, K., Figueroa Rosado, M. M., Gutierrez Mirabal, P. I., Suarez-Martinez, E., & Castro-Rosario, M. E. (2022). Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro. Applied Sciences, 12(20), 10494. https://doi.org/10.3390/app122010494