Investigation of Adenosine Precursors and Biologically Active Peptides in Cultured Fresh Mycelium of Wild Medicinal Mushrooms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Cultivation Condition and Starter Cultures
2.3. Mycelial Cultivation on Solid Culture Media
2.4. Cultivation of Bacteria
2.5. Quantification of Adenosine and Cordycepin Content in Fungal Mycelium and Fruiting Body Crude by High-Performance Liquid Chromatography (HPLC)
2.6. Determination of Antioxidant Activity
2.7. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)
3. Results
3.1. Frooting Body Cultivation
3.2. Enhancement of Total Proteolytic Activity
3.3. Analysing of Antioxidant Activity
3.4. Determination of Cordycepin and Adenosine Derivative Content
3.5. SDS-PAGE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeNinno, M.P. Chapter 11—Adenosine. In Annual Reports in Medicinal Chemistry; Bristol, J.A., Ed.; Academic Press: Cambridge, MA, USA, 1998; Volume 33, pp. 111–120. [Google Scholar]
- Ashraf, S.A.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Patel, M.; Awadelkareem, A.M.; Snoussi, M.; Ashraf, M.S.; Adnan, M.; Hadi, S. Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules 2020, 25, 2735. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013, 65, 474–493. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech 2018, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Mehra, A.; Zaidi, K.U.; Mani, A.; Thawani, V. The health benefits of Cordyceps militaris—A review. Kavaka 2017, 48, 27–32. [Google Scholar]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int. J. Mol. Sci. 2021, 10, 634. [Google Scholar] [CrossRef]
- Wasser, S.P.; Biomed, J. Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges. Biomed. J. 2014, 37, 345–356. [Google Scholar] [CrossRef]
- Qin, P.; Li, X.; Yang, H.; Wang, Z.-Y.; Lu, D. Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecule 2019, 24, 2231. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-C.; Hsu, Y.-J.; Chang, C.-J.; Lin, C.-S.; Martel, J.; Ojcius, D.M.; Young, J.D. Immunomodulatory properties of medicinal mushrooms: Differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity. Innate Immun. 2016, 22, 522–533. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Gao, Q.; Rong, C.; Wang, S.; Zhao, Z.; Liu, Y.; Xu, J. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. J. Fungi 2020, 6, 269. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, M.; Wu, S.; Liao, X.; Wang, J.; Wu, Q.; Zhuang, M.; Ding, Y. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Res. Int. 2020, 134, 109230. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.F.; David, J.C.; Stalpers, J.A. Ainsworth and Brisby’s Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Jeitler, M.; Michalsen, A.; Frings, D.; Hübner, M.; Fischer, M.; Koppold-Liebscher, D.A.; Murthy, V.; Kessler, C.S. Significance of medicinal mushrooms in integrative oncology: A narrative review. Front. Pharmacol. 2020, 11, 580656. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.-N.; Wang, C.-L.; Lay, H.-L. Effect of nutrition, vitamin, grains, and temperature on the mycelium growth and antioxidant capacity of Cordyceps militaris (strains AG-1 and PSJ-1). J. Radiat. Res. Appl. Sci. 2018, 11, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.Y.; Lindroth, A.M.; Kwon, S.; Park, S.J.; Park, Y.J. Adenosine derivatives from Cordyceps exert antitumor effects against ovarian cancer cells through ENT1-mediated transport, induction of AMPK signaling, and consequent autophagic cell death. Biomed. Pharmacother. 2022, 1, 113491. [Google Scholar] [CrossRef] [PubMed]
- Quy, T.N.; Xuan, T.D.; Andriana, Y.; Tran, H.D.; Khanh, T.D.; Teschke, R. Cordycepin Isolated from Cordyceps militaris: Its Newly Discovered Herbicidal Property and Potential Plant-Based Novel Alternative to Glyphosate. Molecules 2019, 24, 2901. [Google Scholar] [CrossRef] [Green Version]
- Gargano, M.L.; van Griensven, L.J.; Isikhuemhen, O.S.; Lindequist, U.; Venturella, G.; Wasser, S.P.; Zervakis, G.I. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2017, 151, 548–565. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; McGowan, E.M.; Ren, N.; Lal, S.; Nassif, N.; Shad-Kaneez, F.; Qu, X.; Lin, Y. Nattokinase: A promising alternative in prevention and treatment of cardiovascular diseases. Biomark. Insights 2018, 13, 1177271918785130. [Google Scholar] [CrossRef] [Green Version]
- Hsu, R.-L.; Lee, K.-T.; Wang, J.-H.; Lee, L.Y.-L.; Chen, R.P.-Y. Amyloid-Degrading Ability of Nattokinase from Bacillus subtilis Natto. J. Agric. Food Chem. 2009, 57, 503–508. [Google Scholar] [CrossRef]
- Prateep, A.; Sumkhemthong, S.; Suksomtip, M.; Chanvorachote, P.; Chaotham, C. Peptides extracted from edible mushroom: Lentinus squarrosulus induces apoptosis in human lung cancer cells. Pharm. Biol. 2017, 55, 1792–1799. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Yao, J.; Sparks, S.; Wang, K.Y. Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease. Int. J. Mol. Sci. 2017, 18, 523. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.; Difrancia, R.; Quagliariello, V.; Savino, E.; Tralongo, P.; Randazzo, C.L.; Berretta, M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: An example of complementary and integrative medicine. Oncotarget 2018, 9, 24837. [Google Scholar] [CrossRef] [PubMed]
- Berovic, M. Cultivation of Medicinal Mushroom Biomass by Solid-State Bioprocessing in Bioreactors. In Solid State Fermentation; Steudler, S., Werner, A., Cheng, J.J., Eds.; Springer: Cham, Switzerland, 2019; Volume 169, pp. 3–25. [Google Scholar]
- Singh, B.P.; Chhakchhuak, L.; Passari, A.K. (Eds.) Biology of Macrofungi (Fungal Biology); Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sornchaithawatwong, C.; Kunthakudee, N.; Sunsandee, N.; Ramakul, P. Selective extraction of cordycepin from Cordyceps militaris–optimisation, kinetics and equilibrium studies. Indian Chem. Eng. 2020, 64, 1–13. [Google Scholar] [CrossRef]
- Singpoonga, N.; Rittiron, R.; Seang-On, B.; Chaiprasart, P.; Bantadjan, Y. Determination of Adenosine and Cordycepin Concentrations in Cordyceps militaris Fruiting Bodies Using Near-Infrared Spectroscopy. ACS Omega 2020, 16, 27235–27244. [Google Scholar] [CrossRef] [PubMed]
- Arias-Londoño, M.A.; Zapata-Ocampo, P.A.; Mosquera-Arevalo, A.R.; Sanchez-Torres, J.D.; Atehortua-Garcés, L. Antifungal protein determination for submerged cultures of the medicinal mushroom Ganoderma lucidum (Ganodermataceae) with activity over the phytopathogen fungus Mycosphaerella fijiensis (Mycosphaerellaceae). Actual. Biol. 2020, 41, 53–64. [Google Scholar] [CrossRef]
- Dong, C.-H.; Yang, T.; Lian, T. A Comparative Study of the Antimicrobial, Antioxidant, and Cytotoxic Activities of Methanol Extracts from Fruit Bodies and Fermented Mycelia of Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms 2014, 16, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Hapuarachchi, K.K.; Elkhateeb, W.A.; Karunarathna, S.C.; Cheng, C.R.; Bandara, A.R.; Kakumyan, P.; Hyde, K.D.; Daba, G.M.; Wen, T.C. Current status of global Ganoderma cultivation, products, industry and market. Mycosphere 2018, 9, 1025–1052. [Google Scholar] [CrossRef]
- Sudheer, S.; Alzorqi, I.; Manickam, S.; Ali, A. Bioactive Compounds of the Wonder Medicinal Mushroom “Ganoderma lucidum”. In Bioactive Molecules in Food; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2019; pp. 1863–1893. [Google Scholar]
- Cleaver, P.D.; Holliday, J.C.; Powers, M.L.; Aloha Medicinals Inc. Method for Growing Cordyceps sinensis on a Substrate. U.S. Patent No 8,008,060, 30 August 2011. [Google Scholar]
- Money, N.P. Are mushrooms medicinal? Fungal Biol. 2016, 120, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef]
- Pei, F.; Shi, Y.; Mariga, A.M.; Yang, W.J.; Tang, X.Z.; Zhao, L.Y.; An, X.X.; Hu, Q.H. Comparison of freeze-drying and freeze-drying combined with microwave vacuum drying methods on drying kinetics and rehydration characteristics of button mushroom (Agaricus bisporus) slices. Food Bioprocess Technol. 2014, 7, 1629–1639. [Google Scholar] [CrossRef]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [Green Version]
- Du, L.N.; Song, J.; Meng, L.J.; Lu, J.H.; Meng, Q.F.; Teng, L.R. Application of Two Modeling Methods in Optimization for Adenosine Extraction from Mycelium of Cordyceps militaris. Adv. Mater. Res. 2011, 343–344, 826–831. [Google Scholar] [CrossRef]
- Guo, M.; Guo, S.; Huaijun, Y.; Bu, N.; Dong, C. Comparison of Major Bioactive Compounds of the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Fruiting Bodies Cultured on Wheat Substrate and Pupae. Int. J. Med. Mushrooms 2016, 18, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.H.; Ng, T.B.; Chan, H.H.L.; Liu, Q.; Man, G.C.W.; Zhang, C.Z.; Guan, S.; Ng, C.C.W.; Fang, E.F.; Wang, H.; et al. Mushroom extracts and compounds with suppressive action on breast cancer: Evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl. Microbiol. Biotechnol. 2020, 104, 4675–4703. [Google Scholar] [CrossRef]
- Yan, X.-F.; Zhang, Z.-M.; Yao, H.-Y.; Guan, Y.; Zhu, J.-P.; Zhang, L.-H.; Wang, R.-W. Cardiovascular Protection and Antioxidant Activity of the Extracts from the Mycelia of Cordyceps sinensis Act Partially Via Adenosine Receptors. Phytother. Res. 2012, 27, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Lee, J.H.; Kim, H.R.; Chun, Y.; Lee, J.H.; Yoo, H.Y.; Park, C.; Kim, S.W. Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 2019, 9, 461. [Google Scholar] [CrossRef]
Media Composition g/L | M0 Control | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|
Potato Dextrose Agar | 20 | 20 | 20 | 20 | 20 |
Peptone | - | 10 | 10 | 10 | 10 |
Yeast extract | 6 | 6 | 6 | 6 | 6 |
Glucose | - | 25 | 25 | - | - |
Dextrose | 25 | - | - | 25 | 25 |
Fructooligosaccharides (FOS) | 5 | 5 | 5 | 5 | 5 |
MgSO4 × 7 H2O | - | 0.2 | 0.2 | 0.2 | 0.2 |
Vitamin B1 | - | - | 0.03 | 0.03 | 0.03 |
KH2PO4 | - | - | 0.1 | 0.1 | 0.1 |
K2HPO4 | - | - | 0.2 | 0.2 | 0.2 |
FeSO4 | - | - | - | - | 0.1 |
Media Composition g/L | S1 | S2 | S3 |
---|---|---|---|
Dextrose | 20 | 20 | 20 |
Potato Dextrose Agar | 5 | 5 | 5 |
Yeast hydrolysate | 5 | 5 | 5 |
Agar | 15 | 15 | 15 |
Whole grain rise | - | 200 | - |
Oak sawdust | - | - | 200 |
Media Composition g/L | Control Media g/L | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|---|
Meat extract | 10 | 10 | 10 | 10 | 10 | 10 |
Peptone | 10 | 10 | 10 | 10 | 10 | 10 |
Yeast extract | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Fructooligosaccharides (FOS) | 1 | 1 | 1 | 1 | 1 | 1 |
NaCl | 5 | 5 | 5 | 5 | 5 | 5 |
K2HPO4 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 |
MgSO4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Native bovine collagen | - | 40 | - | - | - | - |
GNJM | - | - | 40 | - | - | - |
GLM | - | - | - | 40 | - | - |
CSM | - | - | - | - | 40 | - |
CMM | - | - | - | - | - | 40 |
Medium | PU/mL, 24 h | PU/mL, 48 h | PU/mL, 72 h |
---|---|---|---|
K | 1.38 ± 0.004 | 2.27 ± 0.006 | 1.89 ± 0.003 |
P1 | 15.74 ± 0.006 | 23.74 ± 0.007 | 19.71 ± 0.005 |
P2 | 17.37 ± 0.004 | 26.83 ± 0.008 | 22.18 ± 0.007 |
P3 | 18.34 ± 0.007 | 30.57 ± 0.006 | 25.47 ± 0.008 |
P4 | 14.91 ± 0.003 | 24.42 ± 0.007 | 20.56 ± 0.005 |
P5 | 13.67 ± 0.005 | 21.51 ± 0.007 | 17.85 ± 0.004 |
Media | Chitinase Activity (U/mL) Recorded after 24 h | Chitinase Activity (U/mL) Recorded after 48 h | Chitinase Activity (U/mL) Recorded after 72 h |
---|---|---|---|
Control (K) | 4.37 ± 0.002 | 8.65 ± 0.001 | 6.83 ± 0.006 |
CH1 | 32.57 ± 0.007 | 40.86 ± 0.006 | 37.68 ± 0.007 |
CH2 | 33.78 ± 0.007 | 41.62 ± 0.003 | 38.43 ± 0.002 |
CH3 | 34.46 ± 0.007 | 42.73 ± 0.003 | 39.58 ± 0.002 |
CH4 | 31.64 ± 0.007 | 39.93 ± 0.003 | 36.82 ± 0.006 |
CH5 | 33.47 ± 0.007 | 41.29 ± 0.003 | 38.62 ± 0.004 |
Sample | TEAC mg/g | STD ± mg/g | STD% |
---|---|---|---|
CMF (Industrial-st) | 0.71 | 0.042 | 4.71 |
CMM (Industrial) | 0.67 | 0.003 | 0.33 |
CSM (Industrial) | 0.50 | 0.008 | 1.19 |
GLM (Industrial) | 1.18 | 0.062 | 4.77 |
CMFB (Industrial-opt) | 1.85 | 0.019 | 1.02 |
CMFresh | 0.65 | 0.018 | 3.24 |
CSFresh | 0.10 | 0.021 | 5.70 |
GLFresh | 0.09 | 0.02 | 5.47 |
GNJFresh | 0.15 | 0.005 | 1.19 |
GLM (Industrial) | CSM (Industrial) | CMM (Industrial) | CMM (Optimal Industrial), | CMFresh | CSFresh | GLFresh | GNJFresh | |
---|---|---|---|---|---|---|---|---|
Adenosins Dry % | 0.3 | 0.59 | 0.4 | 0.64 | 0.09 | 0.12 | 0.1 | 0.05 |
Adenosins Dry c [mg/g] | 29.94 | 59.14 | 40.35 | 64.22 | 8.46 | 12.16 | 10.54 | 4.52 |
Cordycepins Dry % | 0.09 | 0.28 | 0.32 | 2.22 | 0.08 | 0.05 | 0.1 | 0.11 |
Cordycepins Dry c [mg/g] | 9.01 | 28.3 | 32.25 | 221.69 | 7.83 | 4.88 | 9.72 | 10.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solakov, N.; Kostova, M.; Loginovska, K.; Markov, Z.; de Oliveira, A.C.; Muhovski, Y. Investigation of Adenosine Precursors and Biologically Active Peptides in Cultured Fresh Mycelium of Wild Medicinal Mushrooms. Appl. Sci. 2022, 12, 10618. https://doi.org/10.3390/app122010618
Solakov N, Kostova M, Loginovska K, Markov Z, de Oliveira AC, Muhovski Y. Investigation of Adenosine Precursors and Biologically Active Peptides in Cultured Fresh Mycelium of Wild Medicinal Mushrooms. Applied Sciences. 2022; 12(20):10618. https://doi.org/10.3390/app122010618
Chicago/Turabian StyleSolakov, Nikolay, Milena Kostova, Kamelia Loginovska, Zlati Markov, Ana Caroline de Oliveira, and Yordan Muhovski. 2022. "Investigation of Adenosine Precursors and Biologically Active Peptides in Cultured Fresh Mycelium of Wild Medicinal Mushrooms" Applied Sciences 12, no. 20: 10618. https://doi.org/10.3390/app122010618
APA StyleSolakov, N., Kostova, M., Loginovska, K., Markov, Z., de Oliveira, A. C., & Muhovski, Y. (2022). Investigation of Adenosine Precursors and Biologically Active Peptides in Cultured Fresh Mycelium of Wild Medicinal Mushrooms. Applied Sciences, 12(20), 10618. https://doi.org/10.3390/app122010618