Series-Parallel Generative Adversarial Network Architecture for Translating from Fundus Structure Image to Fluorescence Angiography
Abstract
:1. Introduction
2. Methods
2.1. Dataset Preparation
2.2. Deep Convolutional Neural Networks
2.3. Loss Function
2.4. Model Training and Testing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayreh, S.S. Ocular vascular occlusive disorders: Natural history of visual outcome. Prog. Retin. Eye Res. 2014, 41, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.S. Retinal and ophthalmic artery occlusions preferred practice pattern®. Ophthalmology 2020, 127, 259–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F. Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina 2011, 31, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Temkar, S.; Azad, S.V.; Chawla, R.; Damodaran, S.; Garg, G.; Regani, H.; Nawazish, S.; Raj, N.; Venkatraman, V. Ultra-widefield fundus fluorescein angiography in pediatric retinal vascular diseases. Indian J. Ophthalmol. 2019, 67, 788. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.M.; Nair, N.; Aaker, G.; Ehrlich, J.; Cho, M.; D’Amico, D.J.; Kiss, S. Peripheral retinal ischemia, as evaluated by ultra-widefield fluorescein angiography, is associated with macular edema in patients with diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 580. [Google Scholar]
- Manivannan, A.; Plskova, J.; Farrow, A.; Mckay, S.; Sharp, P.F.; Forrester, J.V. Ultra-wide-field fluorescein angiography of the ocular fundus. Am. J. Ophthalmol. 2005, 140, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Owens, S.L. Indocyanine green angiography. Br. J. Ophthalmol. 1996, 80, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Hong, Y.J.; Makita, S.; Yasuno, Y. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning. Biomed. Opt. Express 2018, 9, 1111–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.; Baker, S.A.; Sanders, K.M. Fundus2Angio: A conditional GAN architecture for generating fluorescein angiography images from retinal fundus photography. In Proceedings of the International Symposium on Visual Computing, San Diego, CA, USA, 5–7 November 2020; Springer: Cham, Switzerland, 2020; pp. 125–138. [Google Scholar]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.L. Attention2angiogan: Synthesizing fluorescein angiography from retinal fundus images using generative adversarial networks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 9122–9129. [Google Scholar]
- Hervella, Á.S.; Rouco, J.; Novo, J.; Ortega, M. Retinal image understanding emerges from self-supervised multimodal reconstruction. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; Springer: Cham, Switzerland, 2018; pp. 321–328. [Google Scholar]
- Li, W.; Kong, W.; Chen, Y.; Wang, J.; He, Y.; Shi, G.; Deng, G. Generating fundus fluorescence angiography images from structure fundus images using generative adversarial networks. arXiv 2020, arXiv:2006.10216. [Google Scholar]
- Tavakkoli, A.; Kamran, S.A.; Hossain, K.F.; Zuckerbrod, S.L. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Sci. Rep. 2020, 10, 21580. [Google Scholar] [CrossRef] [PubMed]
- Schiffers, F.; Yu, Z.; Arguin, S.; Maier, A.; Ren, Q. Synthetic fundus fluorescein angiography using deep neural networks. In Bildverarbeitung für die Medizin 2018; Springer Vieweg: Berlin/Heidelberg, Germany, 2018; pp. 234–238. [Google Scholar]
- Li, K.; Yu, L.; Wang, S.; Heng, P.A. Unsupervised retina image synthesis via disentangled representation learning. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Shenzhen, China, 13 October 2019; Springer: Cham, Switzerland, 2019; pp. 32–41. [Google Scholar]
- Cai, Z.; Xin, J.; Wu, J.; Liu, S.; Zuo, W.; Zheng, N. Triple multi-scale adversarial learning with self-attention and quality loss for unpaired fundus fluorescein angiography synthesis. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1592–1595. [Google Scholar]
- Hervella, Á.S.; Rouco, J.; Novo, J.; Ortega, M. Deep multimodal reconstruction of retinal images using paired or unpaired data. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Li, W.; He, Y.; Kong, W.; Wang, J.; Deng, G.; Chen, Y.; Shi, G. SequenceGAN: Generating fundus fluorescence angiography sequences from structure fundus image. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Strasbourg, France, 27 September 2021; Springer: Cham, Switzerland, 2021; pp. 110–120. [Google Scholar]
- Varma, D.D.; Cugati, S.; Lee, A.W.; Chen, C.S. A review of central retinal artery occlusion: Clinical presentation and management. Eye 2013, 27, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Scott, I.U. Retinal-vein occlusion. N. Engl. J. Med. 2010, 363, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1125–1134. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
PSNR ↑ | SSIM ↑ | MSE ↓ | ||
---|---|---|---|---|
Phase 1 | 16.5551 | 0.4361 | 2206.174 | |
Our algorithm | Phase 2 | 15.8551 | 0.4536 | 2221.589 |
Phase 3 | 16.2978 | 0.5338 | 2003.709 | |
Mean | 16.236 | 0.4745 | 2143.824 | |
Phase 1 | 11.0153 | 0.3299 | 5809.015 | |
Sequence GAN | Phase 2 | 12.8195 | 0.4081 | 3718.937 |
Phase 3 | 13.4115 | 0.5466 | 3635.466 | |
Mean | 12.4154 | 0.4282 | 4387.806 | |
Phase 1 | 13.2272 | 0.3162 | 4163.63 | |
Pix2pix | Phase 2 | 14.0097 | 0.3882 | 2990.015 |
Phase 3 | 14.5526 | 0.5313 | 3171.523 | |
Mean | 13.9298 | 0.4119 | 3441.722 | |
Phase 1 | 10.0193 | 0.1691 | 7489.193 | |
Cycle GAN | Phase 2 | 10.6604 | 0.2057 | 6165.381 |
Phase 3 | 11.713 | 0.3957 | 5422.204 | |
Mean | 10.7975 | 0.2568 | 6358.926 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; He, Y.; Li, W.; Wang, J.; Li, P.; Xing, L.; Zhang, X.; Shi, G. Series-Parallel Generative Adversarial Network Architecture for Translating from Fundus Structure Image to Fluorescence Angiography. Appl. Sci. 2022, 12, 10673. https://doi.org/10.3390/app122010673
Chen Y, He Y, Li W, Wang J, Li P, Xing L, Zhang X, Shi G. Series-Parallel Generative Adversarial Network Architecture for Translating from Fundus Structure Image to Fluorescence Angiography. Applied Sciences. 2022; 12(20):10673. https://doi.org/10.3390/app122010673
Chicago/Turabian StyleChen, Yiwei, Yi He, Wanyue Li, Jing Wang, Ping Li, Lina Xing, Xin Zhang, and Guohua Shi. 2022. "Series-Parallel Generative Adversarial Network Architecture for Translating from Fundus Structure Image to Fluorescence Angiography" Applied Sciences 12, no. 20: 10673. https://doi.org/10.3390/app122010673
APA StyleChen, Y., He, Y., Li, W., Wang, J., Li, P., Xing, L., Zhang, X., & Shi, G. (2022). Series-Parallel Generative Adversarial Network Architecture for Translating from Fundus Structure Image to Fluorescence Angiography. Applied Sciences, 12(20), 10673. https://doi.org/10.3390/app122010673