Unified Simplified Capacity Model for Beam-Column Joints into RC Moment Resisting Frame
Abstract
:1. Introduction
2. Research Significance
3. Analytical Model
- -
- shear failure modes generally with or without the yielding of longitudinal reinforcement bars of beams;
- -
- concrete cracking is generally linked to bond or yielding failure mode of longitudinal reinforcement bars of beams.
- -
- material properties;
- -
- geometry of the RC joint panel;
- -
- type of RC joint (X-shaped or T-shaped);
- -
- reinforcement bars in the RC joint panel;
- -
- axial load acting on the RC joint panel;
- -
- bond condition of reinforcement;
- -
- geometrical and mechanical properties of strengthening systems;
- -
- shear and flexural capacity of the converging members (beams and columns), possibly coupled with strengthening systems.
3.1. Equilibrium Condition of the RC Joint
3.2. Failure Modes
- -
- A first failure mode is due to the conventional ultimate condition of reinforcement bars in tension: the yielding of longitudinal (Vc5) or vertical reinforcement bars (Vc7);
- -
- The debonding of longitudinal reinforcements associated with Vc8, Vc9, and VC10, related to maximum, average, and minimum bond capacity;
- -
- Failure of concrete strut associated to column shear value Vc11.
3.3. Experiemntal Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IBC. Italian Building Code: Ministerial Decree 17 January 2018. In Aggiornamento Delle Norme Tecniche delle Costruzioni; Ministry of Infrastructure and Transport: Rome, Italy, 2018. [Google Scholar]
- EN 1992-1:2004 Eurocode 2; Design of Concrete Structures, Part 1-1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- Lakusic, S. Seismic vulnerability of an existing strategic RC building using non linear static and dynamic analyses. J. Croat. Assoc. Civ. Eng. 2020, 72, 617–626. [Google Scholar] [CrossRef]
- Dilmaç, H. Preliminary assessment approach to predict seismic vulnerability of existing low and mid-rise RC buildings. Bull. Earthq. Eng. 2020, 18, 3101–3133. [Google Scholar] [CrossRef]
- Caprili, S.; Nardini, L.; Salvatore, W. Evaluation of seismic vulnerability of a complex RC existing building by linear and nonlinear modeling approaches. Bull. Earthq. Eng. 2012, 10, 913–954. [Google Scholar] [CrossRef]
- Shayanfar, J.; Bengar, H.A.; Parvin, A. Analytical prediction of seismic behavior of RC joints and columns under varying axial load. Eng. Struct. 2018, 174, 792–813. [Google Scholar] [CrossRef]
- Jung, W.; Kim, J.; Kwon, M. Performance evaluation of RC beam-column joints with different bonding interfaces. Sci. Iran. 2018, 25, 11–21. [Google Scholar] [CrossRef]
- Yang, Y.; Xue, Y.; Wang, N.; Yu, Y. Experimental and numerical study on seismic performance of deficient interior RC joints retrofitted with prestressed high-strength steel strips. Eng. Struct. 2019, 190, 306–318. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Huo, J.; Elghazouli, A.Y. Experimental and analytical assessment of RC joints with varying reinforcement detailing under push-down loading before and after fires. Eng. Struct. 2019, 189, 550–564. [Google Scholar] [CrossRef]
- Vargas, Y.F.; Pujades, L.G.; Barbat, A.H.; Hurtado, J.E. Probabilistic Seismic Damage Assessment of RC Buildings Based on Nonlinear Dynamic Analysis. Open Civ. Eng. J. 2018, 9, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Pepe, V.; De Angelis, A.; Pecce, M.R. Damage assessment of an existing RC infilled structure by numerical simulation of the dynamic response. J. Civ. Struct. Health Monit. 2019, 9, 385–395. [Google Scholar] [CrossRef]
- EN 1998-1:2004: Eurocode 8; Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings. Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- Abdelwahed, B. A review on building progressive collapse, survey and discussion. Case Stud. Constr. Mater. 2019, 11, e00264. [Google Scholar] [CrossRef]
- Pachla, F.; Kowalska-Koczwara, A.; Tatara, T.; Stypuła, K. The influence of vibration duration on the structure of irregular RC buildings. Bull. Earthq. Eng. 2019, 17, 3119–3138. [Google Scholar] [CrossRef] [Green Version]
- Tasligedik, A.S.; Akguzel, U.; Kam, W.Y.; Pampanin, S. Strength Hierarchy at Reinforced Concrete Beam-Column Joints and Global Capacity. J. Earthq. Eng. 2018, 22, 454–487. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Uva, G.; Aiello, M.A. A multi-criteria-based procedure for the robust definition of algorithms aimed at fast seismic risk assessment of existing RC buildings. Structures 2020, 24, 766–782. [Google Scholar] [CrossRef]
- Tasligedik, A.S. Shear Capacity N-M Interaction Envelope for RC Beam-Column Joints with Transverse Reinforcement: A Concept Derived from Strength Hierarchy. J. Earthq. Eng. 2022, 26, 2194–2224. [Google Scholar] [CrossRef]
- Pantelides, C.P.; Hansen, J.; Ameli, M.J.; Reaveley, L.D. Seismic performance of reinforced concrete building exterior joints with substandard details. J. Struct. Integr. Maint. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Ma, G.; Li, H.; Hwang, H.J. Seismic behavior of low-corroded reinforced concrete short columns in an over 20-year building structure. Soil Dyn. Earthq. Eng. 2018, 106, 90–100. [Google Scholar] [CrossRef]
- De Risi, M.T.; Verderame, G.M. Experimental assessment and numerical modelling of exterior non-conforming beam-column joints with plain bars. Eng. Struct. 2017, 150, 115–134. [Google Scholar] [CrossRef]
- Do, V.T.; Pham, V.V.; Nguyen, H.N. On the development of refined plate theory for static bending behaviour of functionally graded plates. Math. Probl. Eng. 2020, 2020, 2836763. [Google Scholar] [CrossRef]
- Hoa, L.K.; Pham, V.V.; Dinh Duc, N.; Thoi Trung, N.; Truong Son, L.; Thom, D.V. Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. J. Mech. Eng. Sci. 2020, 235, 3641–3653. [Google Scholar] [CrossRef]
- Tran, T.T.; Nguyen, H.N.; Do, V.T.; Minh, P.V.; Dinh Duc, N. Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory. J. Sandw. Struct. Mater. 2019, 23, 906–930. [Google Scholar] [CrossRef]
- Duc, N.D.; Trinh, T.D.; Do, T.V.; Doan, D.H. On the buckling behavior of multi-cracked FGM plates. In Proceedings of the International Conference on Advances in Computational Mechanics (ACOME 2017), Phu Quoc, Vietnam, 2–4 August 2017. [Google Scholar] [CrossRef]
- Pauletta, M.; Di Marco, C.; Frappa, G.; Somma, G.; Igino, P.; Miani, M.; Da, S.; Russo, G. Semi-empirical model for shear strength of RC interior beam-column joints subjected to cyclic loads. Eng. Struct. 2020, 224, 111223. [Google Scholar] [CrossRef]
- Pauletta, M.; Di Marco, C.; Frappa, G.; Miani, M.; Campione, G.; Russo, G. Seismic behavior of exterior RC beam-column joints without code-specified ties in the joint core. Eng. Struct. 2020, 228, 111542. [Google Scholar] [CrossRef]
- Shafaei, J.; Hosseini, A.; Marefat, M.S.; Ingham, J.M.; Zare, H. Experimental Evaluation of Seismically and Non-Seismically Detailed External RC Beam-Column Joints. J. Earthq. Eng. 2017, 21, 776–807. [Google Scholar] [CrossRef]
- Pantelides, C.P.; Hansen, J.; Nadauld, J.; Reaveley, L.D. Assessment of Reinforced Concrete Building Exterior Joints with Substandard Details; Technical Report No. 2002/18 PEER; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 18 May 2002. [Google Scholar]
- Yurdakul, Ö.; Del Vecchio, C.; Di Ludovico, M.; Avşar, Ö. Numerical simulation of substandard beam-column joints with different failure mechanisms. Struct. Concr. 2020, 21, 2515–2532. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, W.; Li, S.; Tang, M. Effects of simultaneous fatigue loading and corrosion on the behavior of reinforced beams. Constr. Build. Mater. 2018, 181, 85–93. [Google Scholar] [CrossRef]
- Shayanfar, J.; Hemmati, A.; Bengar, H.A. A simplified numerical model to simulate RC beam–column joints collapse. Bull. Earthq. Eng. 2019, 17, 803–844. [Google Scholar] [CrossRef]
- Xie, L.; Lu, X.; Guan, H.; Lu, X. Experimental Study and Numerical Model Calibration for Earthquake-Induced Collapse of RC Frames with Emphasis on Key Columns, Joints, and the Overall Structure. J. Earthq. Eng. 2015, 19, 1320–1344. [Google Scholar] [CrossRef] [Green Version]
- Shafaei, J. Non-linear macro modelling of cyclic response of non-seismically detailed reinforced-concrete connections. Mag. Concr. Res. 2021, 73, 80–97. [Google Scholar] [CrossRef]
- Rizwan, M.; Ahmad, N.; Naeem Khan, A.; Qazi, S.; Akbar, J.; Fahad, M. Shake table investigations on code non-compliant reinforced concrete frames. Alex. Eng. J. 2020, 59, 349–367. [Google Scholar] [CrossRef]
- Cheng, J.; Luo, X.; Xiang, P. Experimental study on seismic behavior of RC beams with corroded stirrups at joints under cyclic loading. J. Build. Eng. 2020, 32, 101489. [Google Scholar] [CrossRef]
- Jin, L.; Miao, L.; Han, J.; Du, X.; Wei, N.; Li, D. Size effect tests on shear failure of interior RC beam-to-column joints under monotonic and cyclic loadings. Eng. Struct. 2018, 175, 591–604. [Google Scholar] [CrossRef]
- Wang, N.; Shi, Q.X. Shear model and nonlinear analysis of rc beam-column joint with high-strength stirrups. Gongcheng Lixue/Eng. Mech. 2017, 34, 89–96. [Google Scholar] [CrossRef]
- Moodi, Y.; Sohrabi, M.R.; Mousavi, S.R. Effects of stirrups in spliced region on the bond strength of corroded splices in reinforced concrete (RC) beams. Constr. Build. Mater. 2020, 230, 116873. [Google Scholar] [CrossRef]
- Jin, L.; Du, M.; Li, D.; Du, X.; Xu, H. Effects of cross section size and transverse rebar on the behavior of short squared RC columns under axial compression. Eng. Struct. 2017, 142, 223–239. [Google Scholar] [CrossRef]
- Aly, N.; AlHamaydeh, M.; Galal, K. Quantification of the Impact of Detailing on the Performance and Cost of RC Shear Wall Buildings in Regions with High Uncertainty in Seismicity Hazards. J. Earthq. Eng. 2018, 24, 421–446. [Google Scholar] [CrossRef]
- Chiu, C.K.; Noguchi, T.; Kanematsu, M. Effects of maintenance strategies on the life-cycle performance and cost of a deteriorating RC building with high-seismic hazard. J. Adv. Concr. Technol. 2010, 8, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Cardone, D.; Gesualdi, G.; Perrone, G. Cost-Benefit Analysis of Alternative Retrofit Strategies for RC Frame Buildings. J. Earthq. Eng. 2019, 23, 208–241. [Google Scholar] [CrossRef]
- O’Reilly, G.J.; Sullivan, T.J. Probabilistic seismic assessment and retrofit considerations for Italian RC frame buildings. Bull. Earthq. Eng. 2018, 16, 1447–1485. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Colacurcio, E.; Di Filippo, A.; Formisano, A.; Massimilla, A.; Landolfo, R. State-of-the-art on steel exoskeletons for seismic retrofit of existing RC buildings. Ing. Sismica 2020, 37, 33–49. [Google Scholar]
- Al-Sherrawi, M.H.; Salman, H.M. Analytical Model for Construction of Interaction Diagram for RC Columns Strengthened by Steel Jacket. Int. J. Sci. Res. 2015, 6, 324–328. [Google Scholar] [CrossRef]
- He, A.; Cai, J.; Chen, Q.J.; Liu, X.; Xu, J. Behaviour of steel-jacket retrofitted RC columns with preload effects. Thin-Walled Struct. 2016, 109, 25–39. [Google Scholar] [CrossRef]
- Nechevska-Cvetanovska, G.; Roshi, A. Rehabilitation of RC buildings in seismically active regions using traditional and innovative materials. Gradjevinski Mater. I Konstr. 2019, 62, 19–30. [Google Scholar] [CrossRef]
- Imjai, T.; Setkit, M.; Garcia, R.; Sukontasukkul, P.; Limkatanyu, S. Seismic strengthening of low strength concrete columns using high ductile metal strap confinement: A case study of kindergarten school in Northern Thailand. Walailak J. Sci. Technol. 2020, 17, 1335–1347. [Google Scholar] [CrossRef]
- Bournas, D.A. Concurrent seismic and energy retrofitting of RC and masonry building envelopes using inorganic textile-based composites combined with insulation materials: A new concept. Compos. Part B Eng. 2018, 148, 166–179. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Dhawade, S.M. Benefits of Prefabricated Building Material Over on Site Construction-A Review. International Journal of Research in Engineering, Science and Technologies (IJRESTs). Civ. Eng. 2015, 1, 195–202. [Google Scholar]
- Bianchi, F.; Nascimbene, R.; Pavese, A. Experimental vs. Numerical Simulations: Seismic Response of a Half Scale Three-Storey Infilled RC Building Strengthened Using FRP Retrofit. Open Civ. Eng. J. 2018, 11, 1158–1169. [Google Scholar] [CrossRef]
- Dang, C.T.; Dinh, N.H. Experimental Study on Structural Performance of RC Exterior Beam-Column Joints Retrofitted by Steel Jacketing and Haunch Element under Cyclic Loading Simulating Earthquake Excitation. Adv. Civ. Eng. 2017, 2017, 9263460. [Google Scholar] [CrossRef] [Green Version]
- Zinno, A.; Lignola, G.P.; Prota, A.; Manfredi, G.; Cosenza, E. Influence of free edge stress concentration on effectiveness of FRP confinement. Compos. Part B Eng. 2010, 41, 523–532. [Google Scholar] [CrossRef]
- Ilkhani, M.H.; Naderpour, H.; Kheyroddin, A. Soft computing-based approach for capacity prediction of FRP-strengthened RC joints. Sci. Iran. 2019, 26, 2678–2688. [Google Scholar] [CrossRef] [Green Version]
- Niroomandi, A.; Maheri, A.; Maheri, M.R.; Mahini, S.S. Seismic performance of ordinary RC frames retrofitted at joints by FRP sheets. Eng. Struct. 2010, 32, 2326–2336. [Google Scholar] [CrossRef]
- Giamundo, V.; Lignola, G.P.; Prota, A.; Manfredi, G. Analytical evaluation of FRP wrapping effectiveness in restraining reinforcement bar buckling. Anal. Eval. FRP Wrap. Eff. Restraining Reinf. Bar Buckling 2014, 140, 04014043. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Li, J. Study of Seismic Behavior of RC Beam-Column Joints Strengthened by Sprayed FRP. Adv. Mater. Sci. Eng. 2018, 2018, 3581458. [Google Scholar] [CrossRef] [Green Version]
- Faleschini, F.; Gonzalez-Libreros, J.; Zanini, M.A.; Hofer, L.; Sneed, L.; Pellegrino, C. Repair of severely-damaged RC exterior beam-column joints with FRP and FRCM composites. Compos. Struct. 2019, 207, 352–363. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; Siddiqui, N.A.; Elsanadedy, H.M.; Abadel, A.A.; Aqel, M.A. Textile-reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints. J. Compos. Constr. 2011, 15, 920–933. [Google Scholar] [CrossRef]
- Shang, X.; Yu, J.; Li, L.; Lu, Z. Strengthening of RC Structures by Using Engineered Cementitious Composites: A Review. Sustainability 2019, 11, 3384. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, A.S.; D’Antino, T.; Colombi, P.; Carloni, C.; Poggi, C. Fatigue behavior of PBO FRCM composite applied to concrete substrate. Materials 2020, 13, 2368. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Fonseca, S.; Correia, J.R.; Custódio, J.; Silva, H.M.; Machado, A.M.; Sousa, J. Durability of FRP—Concrete bonded joints in structural rehabilitation: A review. Int. J. Adhes. Adhes. 2018, 83, 153–167. [Google Scholar] [CrossRef]
- Harrington, C.C.; Liel, A.B. Evaluation of Seismic Performance of Reinforced Concrete Frame Buildings with Retrofitted Columns. J. Struct. Eng. 2020, 146, 04020237. [Google Scholar] [CrossRef]
- Basereh, S.; Okumus, P.; Aaleti, S. Seismic Retrofit of Reinforced Concrete Shear Walls to Ensure Reparability. In Proceedings of the Structures Congress 2020, St. Louis, MO, USA, 5–8 April 2020. [Google Scholar] [CrossRef]
- Vielma-Perez, J.C.; Porcu, M.C.; Fuentes, M.A.G. Non-linear analyses to assess the seismic performance of RC buildings retrofitted with FRP. Rev. Int. Metodos Numer. Para Calc. Y Diseno Ing. 2020, 36, 24. [Google Scholar] [CrossRef]
- Tran, C.T.N.; Li, B. Analytical Model for Shear-critical Reinforced Concrete Interior Beam-column Joints. J. Earthq. Eng. 2020, 24, 1205–1221. [Google Scholar] [CrossRef]
- Wong, H.F.; Kuang, J.S. Predicting shear strength of RC interior beam-column joints by modified rotating-angle softened-truss model. Comput. Struct. 2013, 133, 12–17. [Google Scholar] [CrossRef]
- Najafgholipour, M.A.; Dehghan, S.M.; Dooshabi, A.; Niroomandi, A. Finite element analysis of reinforced concrete beam-column connections with governing joint shear failure mode. Lat. Am. J. Solids Struct. 2017, 14, 1200–1225. [Google Scholar] [CrossRef] [Green Version]
- Caprili, S.; Chellini, G.; Mattei, F.; Romis, F.; Salvatore, W. Experimental Assessment of the Cyclic Behaviour of RC-DP Beam to Column Joints. J. Earthq. Eng. 2020, 26, 2301–2327. [Google Scholar] [CrossRef]
- Kim, J.; LaFave, J.M. Key influence parameters for the joint shear behaviour of reinforced concrete (RC) beam-column connections. Eng. Struct. 2007, 29, 2523–2539. [Google Scholar] [CrossRef]
- Santarsiero, G.; Masi, A. Key Mechanisms of the Seismic Behaviour of External RC Wide Beam–column Joints. Open Constr. Build. Technol. J. 2019, 13, 36–51. [Google Scholar] [CrossRef]
- Lima, C.; Martinelli, E. A low-cycle fatigue approach to predicting shear strength degradation in RC joints subjected to seismic actions. Bull. Earthq. Eng. 2019, 17, 6061–6078. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Javed, M.F.; Iqbal, M.F.; Mahmood, Z.; Wang, F.; Liu, Q.F. Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming. Structures 2020, 25, 212–228. [Google Scholar] [CrossRef]
- Abdissa, G. Finite Element Analysis of Reinforced Concrete Interior Beam Column Connection Subjected to Lateral Loading. Am. J. Civ. Eng. 2020, 8, 20. [Google Scholar] [CrossRef]
- Supaviriyakit, T.; Pimanmas, A.; Warnitchai, P. Nonlinear finite element analysis of nonseismically detailed interior rc beam-column connection under reversed cyclic load. Asean J. Sci. Technol. Dev. 2007, 24, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Pantò, B.; Caddemi, S.; Caliò, I.; Spacone, E. A 2D beam-column joint macro-element for the nonlinear analysis of RC frames. Earthq. Eng. Struct. Dyn. 2021, 50, 935–954. [Google Scholar] [CrossRef]
- Bossio, A.; Fabbrocino, F.; Lignola, G.P.; Prota, A.; Manfredi, G. Simplified Model for Strengthening Design of Beam–Column Internal Joints in Reinforced Concrete Frames. Polymers 2015, 7, 1732–1754. [Google Scholar] [CrossRef]
- Bossio, A.; Fabbrocino, F.; Lignola, G.P.; Prota, A.; Manfredi, G. Design Oriented Model for the Assessment of T-Shaped Beam-Column Joints in Reinforced Concrete Frames. Buildings 2017, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Parate, K.; Kumar, R. Shear strength criteria for design of RC beam–column joints in building codes. Bulletin of Earthquake Engineering 2019, 17, 1407–1493. [Google Scholar] [CrossRef]
- Basha, A.M.; Fayed, S. Behavior of RC Eccentric Corner Beam-Column Joint under Cyclic Loading: An Experimental Work. Civ. Eng. J. 2019, 5, 295. [Google Scholar] [CrossRef] [Green Version]
- Bilotta, A.; Cosenza, E. Shear capacity model for reinforced concrete joints. Eng. Struct. 2022, 266, 114631. [Google Scholar] [CrossRef]
- Shiohara, H. New Model for Shear Failure of RC Interior Beam-Column Connections. J. Struct. Eng. 2001, 127, 152–160. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Lignola, G.P.; Prota, A.; Cosenza, E. Nonlinear analysis of cross sections under axial load and biaxial bending. ACI Struct. J. 2010, 107, 390–399. [Google Scholar]
- Lignola, G.P.; Prota, A.; Manfredi, G. Simplified modeling of rectangular concrete cross-sections confined by external FRP wrapping. Polymers 2014, 6, 1187–1206. [Google Scholar] [CrossRef] [Green Version]
- Lignola, G.P.; Nardone, F.; Prota, A.; Manfredi, G. Analytical model for the effective strain in FRP-wrapped circular RC columns. Compos. Part B Eng. 2012, 43, 3208–3218. [Google Scholar] [CrossRef]
- CEB-FIP. Model Code for Concrete Structures 2010; Comité Euro-International du Béton, Wilhelm Ernst & Sohn: Berlin, Germany, 2013. [Google Scholar]
- ACI Committee. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14); American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- NZS 3101.1:2006; Concrete Structures Standard—Part 1: The Design of Concrete Structures Sets out Minimum Requirements for the Design of Reinforced and Pre-Stressed Concrete Structures. Standards New Zealand: Wellington, New Zealand, 2006.
- CSA A23.3-04; Design of Concrete Structures. Canadian Standards Association: Rexdale, TO, Canada, 2004.
- AIJ Standard for Structural Calculation of Reinforced Concrete Structures (Japanese); Maruzen; Architectural Institute of Japan (AIJ): Tokyo, Japan, 2010.
- IS 13920; Ductile Design and Detailing of Reinforced Concrete Structures Subjected to Seismic Forces-Code of Practice. Bureau of Indian Standards: New Delhi, India, 2016.
Column Shear | Failure Mode |
---|---|
Vc1 | Flexural capacity of beam (FSB) |
Vc2 | Flexural capacity of column (FSC) |
Vc3 | Shear capacity of beam (SSB) |
Vc4 | Shear capacity of column (SSC) |
Vc5 | Yielding of horizontal bottom (YBB) or top bars (YTB) in beams |
Vc6 | Yielding of vertical bars on the top column (YTC) |
Vc7 | Yielding of vertical bars on the bottom column (YBC) |
Vc8 | Maximum bond capacity exceedance (BC1) |
Vc9 | Average bond capacity exceedance (BC2) |
Vc10 | Minimum bond capacity exceedance (BC3) |
Vc11 | Crushing capacity of concrete strut (SC) |
Type | Prediction Models | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T-Shaped | ACI 318-14 | EN1998-1:2004 | NZS 3101:1- 2006 | CSA A23.3: 2004 | AIJ: 2010 | IS 13920: 2016 | Proposed Model, Vj > 0 | Proposed Model, Vj < 0 | ||||
τmin | τav | τmax | τmin | τav | τmax | |||||||
μ | 0.95 | 0.92 | 0.73 | 1.08 | 1.33 | 1.15 | 0.98 | 0.98 | 0.96 | 0.98 | 0.98 | 0.96 |
σ | 0.38 | 0.56 | 0.32 | 0.40 | 0.47 | 0.4 | 0.07 | 0.07 | 0.09 | 0.08 | 0.08 | 0.07 |
CV | 0.4 | 0.61 | 0.46 | 0.37 | 0.35 | 0.35 | 0.07 | 0.07 | 0.8 | 0.08 | 0.08 | 0.07 |
Type | Prediction Models | ||||||||
---|---|---|---|---|---|---|---|---|---|
X-Shaped | ACI 318-14 | EN1998-1:2004 | NZS 3101:1- 2006 | CSA A23.3: 2004 | AIJ: 2010 | IS 13920: 2016 | Proposed Model | ||
τmin | τav | τmax | |||||||
μ | 0.89 | 0.76 | 0.89 | 1.02 | 0.71 | 1.11 | 1.03 | 1.02 | 1.04 |
σ | 0.45 | 0.44 | 0.50 | 0.52 | 0.33 | 0.56 | 0.07 | 0.09 | 0.08 |
CV | 0.50 | 0.58 | 0.56 | 0.5 | 0.47 | 0.5 | 0.08 | 0.09 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaglia, G.; Lignola, G.P.; Fabbrocino, F.; Prota, A. Unified Simplified Capacity Model for Beam-Column Joints into RC Moment Resisting Frame. Appl. Sci. 2022, 12, 10709. https://doi.org/10.3390/app122110709
Ramaglia G, Lignola GP, Fabbrocino F, Prota A. Unified Simplified Capacity Model for Beam-Column Joints into RC Moment Resisting Frame. Applied Sciences. 2022; 12(21):10709. https://doi.org/10.3390/app122110709
Chicago/Turabian StyleRamaglia, Giancarlo, Gian Piero Lignola, Francesco Fabbrocino, and Andrea Prota. 2022. "Unified Simplified Capacity Model for Beam-Column Joints into RC Moment Resisting Frame" Applied Sciences 12, no. 21: 10709. https://doi.org/10.3390/app122110709
APA StyleRamaglia, G., Lignola, G. P., Fabbrocino, F., & Prota, A. (2022). Unified Simplified Capacity Model for Beam-Column Joints into RC Moment Resisting Frame. Applied Sciences, 12(21), 10709. https://doi.org/10.3390/app122110709