Wave Aberration Correction for an Unobscured Off-Axis Three-Mirror Astronomical Telescope Using an Aberration Field Compensation Mechanism
Abstract
:1. Introduction
2. Principle
2.1. Optical Path Structure and Design Parameters of an Unobscured Off-Axis Three-Mirror Telescope
2.2. Coupling Effect and Compensation Relationship of Net Aberration Fields Induced by Different Perturbation Parameters
3. Compensation Correction Models for the Off-Axis TMA Telescope
- Making each dimension of SM randomly generate N groups of perturbations according to a standard uniform distribution within a certain range. Meanwhile, bringing the generated N groups of perturbations into Equations (2)–(4), so that N groups of sample data can be obtained:
- Integrating this batch of sample data into the structural form shown in Equation (25), so the following equations could be obtained:
- 3.
- Writing Equation (27) in the form of a matrix so as to get
4. Verification of Compensation Correction Models
4.1. A Specific Compensation Correction Case
- In the optical design model of the off-axis three-mirror telescope (ZEMAX software is used for modeling in this paper), the perturbation parameters (TM misalignments and PM figure errors) shown in Table 1 are introduced randomly.
- The dynamic data linking function of MATLAB and ZEMAX is used to calculate the full-field distributions of the Fringe Zernike astigmatism(C5/6), the Fringe Zernike coma(C7/8), and the Fringe Zernike spherical aberration(C9) before and after perturbation of the telescope, they are calculated with 12 × 12 equally spaced FOV points in 1° × 1° and shown in Figure 2a,b, Figure 3a,b, Figure 4a,b, respectively.
- The calculated compensation adjustments are introduced into the perturbed telescope and the full-field distributions of the Fringe Zernike astigmatism(C5/6), the Fringe Zernike coma(C7/8), and the Fringe Zernike spherical aberration(C9) after compensation adjustment of the telescope are calculated, as shown in Figure 2c, Figure 3c and Figure 4c.
- In addition, in order to evaluate the compensation correction accuracy more clearly, Figure 5a–c show the full-field distributions of C5/6, C7/8, and C9 differences before perturbation and after compensation adjustment of the telescope, respectively.
4.2. Monte Carlo Analyses and Comparison for Different Compensation Correction Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Surface | Radius (mm) | Thickness (mm) | Conic Constant | Decenter X (mm) | Decenter Y (mm) | Tilt About X (deg) | Tilt About Y (deg) |
---|---|---|---|---|---|---|---|
Object | Infinity | Infinity | 0 | – | – | – | – |
Stop | Infinity | 0 | 0 | – | −460 | – | – |
PM | −3600.41 | −1551.77 | −0.921 | 0 | 0 | 0 | 0 |
SM | −910.903 | 1558.771 | −4.828 | 0 | −8.241 | 1 | 0 |
TM | −1219.413 | −1533.43 | −0.292 | 0 | −24.122 | 1.752 | 0 |
Image | Infinity | 0 | – | – | – | – | – |
Surface | ||||
---|---|---|---|---|
PM(stop) | Base sphere | 10.4480 | −37.1738 | 33.0656 |
Aspheric departure | 0 | 0 | −30.4534 | |
SM | Base sphere | −5.7486 | 11.0041 | −5.2660 |
Aspheric departure | 11.0197 | 12.5543 | 3.5756 | |
TM | Base sphere | 12.5832 | 2.7675 | 0.1521 |
Aspheric departure | −28.0608 | 10.9087 | −1.0601 |
References
- Lampton, M.; Sholl, M. Comparison of on-axis three-mirror-anastigmat telescopes. Proc. SPIE 2007, 6687, 66870S. [Google Scholar]
- Zhao, N.; Papa, J.C.; Fuerschbach, K.; Qiao, Y.; Thompson, K.P.; Rolland, J.P. Experimental investigation in nodal aberration theory (NAT) with a customized Ritchey-Chrétien system: Third-order coma. Opt. Express 2018, 26, 8729–8743. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, R.J.R.; Hawley, S.L. Some astronomical performance advantages of off-axis telescopes. Publ. Astron. Soc. Pac. 1999, 111, 601–620. [Google Scholar] [CrossRef]
- Singaravelu, B.; Cabanac, R.A. Obstructed telescopes versus unobstructed telescopes for wide field survey—A quantitative analysis. Publ. Astron. Soc. Pac. 2014, 126, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Cheng, D.; Wang, Y. Direct generation of starting points for freeform off-axis three-mirror imaging system design using neural network based deep-learning. Opt. Express 2019, 27, 17228–17238. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, X.; Zhang, J.; Shi, G.; Wu, H. Optics ellipticity performance of an unobscured off-axis space telescope. Opt. Express 2014, 22, 25277–25285. [Google Scholar] [CrossRef] [Green Version]
- Upton, R.; Rimmele, T.; Hubbard, R. Active optical alignment of the Advanced Technology Solar Telescope. Proc. SPIE 2006, 6271, 62710R. [Google Scholar]
- Liang, M.; Krabbendam, V.; Claver, C.F.; Chandrasekharan, S.; Xin, B. Active Optics in Large Synoptic Survey Telescope. Proc. SPIE 2012, 84444, 84444Q. [Google Scholar]
- Wilson, R.N.; Franza, F.; Noethe, L. Active optics: I. A system for optimizing the optical quality and reducing the costs of large telescopes. J. Mod. Opt. 1987, 34, 485–509. [Google Scholar] [CrossRef]
- An, Q.; Wu, X.; Lin, X.; Wang, J.; Chen, T.; Zhang, J.; Li, H.; Cao, H.; Tang, J.; Guo, N.; et al. Alignment of DECam-like large survey telescope for real-time active optics and error analysis. Opt. Commun. 2021, 484, 126685. [Google Scholar] [CrossRef]
- Wang, J.; He, X.; Luo, J.; Zhang, X.; Xu, T. Alignment algorithm of nonsymmetric off-axis reflective astronomical telescopes based on the modified third-order nodal aberration theory. Opt. Express 2022, 30, 13159–13183. [Google Scholar] [CrossRef]
- Stahl, H.P.; Oschmann, M.; Clamin, M.; Postma, M.; Arnold, S. ATLAST-8 Mission concept study for 8-meter Monolithic UV/Optical Space Telescope. Proc. SPIE 2010, 7731, 925–934. [Google Scholar]
- Oh, E.; Ahn, K.-B.; Kim, S.-W. Experimental sensitivity table method for precision alignment of Amon-Ra instrument. J. Astron. Space Sci. 2014, 31, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.D.; Choi, Y.W.; Kang, M.S.; Choi, S.C. Reverse-optimization alignment algorithm using Zernike sensitivity. J. Opt. Soc. Korea 2005, 9, 68–73. [Google Scholar] [CrossRef]
- Lee, H.; Dalton, G.B.; Tosh, I.A.J.; Kim, S.-W. Computer-guided alignment I: Phase and amplitude modulation of the alignment-influenced wavefront. Opt. Express 2007, 15, 3127–3139. [Google Scholar] [CrossRef]
- Lee, H.; Dalton, G.B.; Tosh, I.A.J.; Kim, S.-W. Computer-guided alignment II: Optical system alignment using differential wavefront sampling. Opt. Express 2007, 15, 15424–15437. [Google Scholar] [CrossRef]
- Thompson, K.P. Aberration Fields in Tilted and Decentered Optical Systems. Ph.D. Dissertation, University of Arizona, Tucson, AZ, USA, 1980. [Google Scholar]
- Thompson, K.P. Description of the 3rd-order optical aberrations of near-circular pupil optical systems without symmetry. J. Opt. Soc. Am. A 2005, 22, 1389–1401. [Google Scholar] [CrossRef]
- Thompson, K.P. Multinodal 5th-order optical aberrations of optical systems without rotational symmetry: Spherical aberration. J. Opt. Soc. Am. A 2009, 26, 1090–1100. [Google Scholar] [CrossRef]
- Thompson, K.P. Multinodal 5th-order optical aberrations of optical systems without rotational symmetry: The comatic aberrations. J. Opt. Soc. Am. A 2010, 27, 1490–1504. [Google Scholar] [CrossRef]
- Thompson, K.P. Multinodal 5th-order optical aberrations of optical systems without rotational symmetry: The astigmatic aberrations. J. Opt. Soc. Am. A 2011, 28, 821–836. [Google Scholar] [CrossRef]
- Schmid, T.; Rolland, J.P.; Rakich, A.; Thompson, K.P. Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT). Opt. Express 2010, 18, 17433–17447. [Google Scholar] [CrossRef] [PubMed]
- Schiesser, E.M.; Bauer, A.; Rolland, J.P. Estimating field-dependent nodal aberration theory coefficients from Zernike full-field displays by utilizing eighth-order astigmatism. J. Opt. Soc. Am. A 2019, 36, 2115–2128. [Google Scholar] [CrossRef] [PubMed]
- Sebag, J.; Gressler, W.; Schmid, T.; Rolland, J.P.; Thompson, K.P. LSST Telescope Alignment Plan Based on Nodal Aberration Theory. Publ. Astron. Soc. Pac. 2012, 124, 380–390. [Google Scholar] [CrossRef]
- Gu, Z.; Yan, C.; Wang, Y. Alignment of a three-mirror anastigmatic telescope using nodal aberration theory. Opt. Express 2015, 23, 25182–25201. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Wang, Y.; Ju, G. Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes. J. Astron. Telesc. Instrum. Syst. 2018, 4, 019002. [Google Scholar] [CrossRef]
- Schiesser, E.M.; Bahk, S.W.; Bromage, J.; Rolland, J.P. Design and alignment of an all-spherical unobscured four-mirror image relay for an ultra-broadband sub-petawatt laser. Appl. Opt. 2019, 58, 9514–9523. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Xu, S.; Ma, H. Active optical alignment of off-axis telescopes based on nodal aberration theory. Opt. Express 2016, 24, 26392–26413. [Google Scholar] [CrossRef]
- Ju, G.; Yan, C.; Gu, Z.; Ma, H. Aberration fields of off-axis two-mirror astronomical telescopes induced by lateral misalignments. Opt. Express 2016, 24, 24665–24703. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, S.; Ma, H.; Liu, N. Optical compensation for the perturbed three mirror anastigmatic telescope based on nodal aberration theory. Opt. Express 2017, 25, 12867–12883. [Google Scholar] [CrossRef]
- Wen, M.; Han, C.; Ma, H. Active compensation for optimal RMS wavefront error in perturbed off-axis optical telescopes using nodal aberration theory. Appl. Opt. 2021, 60, 1790–1800. [Google Scholar] [CrossRef]
- Ju, G.; Yan, C.; Gu, Z.; Ma, H. Nonrotationally symmetric aberrations of off-axis two-mirror astronomical telescopes induced by axial misalignments. Appl. Opt. 2018, 57, 1399–1409. [Google Scholar] [CrossRef]
- Thompson, K.P.; Schmid, T.; Rolland, J.P. Alignment induced aberration fields of next generation telescopes. Proc. SPIE 2007, 6834, 68340B. [Google Scholar]
- Thompson, K.P.; Schmid, T.; Cakmakci, O.; Rolland, J.P. Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry. J. Opt. Soc. Am. A 2009, 26, 1503–1517. [Google Scholar] [CrossRef]
−0.07 | 0.08 | 0.04 | 0.06 | 0.08 |
−0.03 mm | 0.07 mm | 0.006° | −0.004° | 0.05 mm |
0.1019 mm | 0.0485 mm | −0.0012° | 0.0019° | 0.0233 mm |
Linear Misalignment (mm) | Angular Misalignment (deg) | ||
---|---|---|---|
Case 1 | [−0.1 0.1] | [−0.01 0.01] | [−0.05 0.05] |
Case 2 | [−0.2 0.2] | [−0.02 0.02] | [−0.1 0.1] |
Case 3 | [−0.3 0.3] | [−0.03 0.03] | [−0.15 0.15] |
Case 4 | [−0.1 0.1] | [−0.01 0.01] | [−0.05 0.05] |
With 5% measurement error |
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
SMCM | ||||
TMCM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; He, X.; Zhang, X.; Ma, M.; Cao, Z. Wave Aberration Correction for an Unobscured Off-Axis Three-Mirror Astronomical Telescope Using an Aberration Field Compensation Mechanism. Appl. Sci. 2022, 12, 10716. https://doi.org/10.3390/app122110716
Wang J, He X, Zhang X, Ma M, Cao Z. Wave Aberration Correction for an Unobscured Off-Axis Three-Mirror Astronomical Telescope Using an Aberration Field Compensation Mechanism. Applied Sciences. 2022; 12(21):10716. https://doi.org/10.3390/app122110716
Chicago/Turabian StyleWang, Jinxin, Xu He, Xiaohui Zhang, Mingze Ma, and Zhirui Cao. 2022. "Wave Aberration Correction for an Unobscured Off-Axis Three-Mirror Astronomical Telescope Using an Aberration Field Compensation Mechanism" Applied Sciences 12, no. 21: 10716. https://doi.org/10.3390/app122110716
APA StyleWang, J., He, X., Zhang, X., Ma, M., & Cao, Z. (2022). Wave Aberration Correction for an Unobscured Off-Axis Three-Mirror Astronomical Telescope Using an Aberration Field Compensation Mechanism. Applied Sciences, 12(21), 10716. https://doi.org/10.3390/app122110716