Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The Material Used in This Study and the Dataset Generation Process
2.2. Image Data Augmentation
2.3. Convolutional Neural Network Backbones Used in This Work
2.3.1. AlexNet
2.3.2. VGGNet
2.3.3. GoogLeNet
2.3.4. ResNet
2.3.5. SqueezeNet
2.4. Baseline Network Architecture—Single Task Learning
2.5. Network Architecture with Multi-Task Learning
2.6. Experiment Design and Configuration
2.6.1. Experimental Dataset
2.6.2. Experimental Configuration
2.6.3. Evaluation Metrics
3. Results
3.1. Performance Comparison of the Baseline and Multitask Learning Models with Different Backbones
3.2. Performance Comparison of the Unseen Test Set
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdollah-Zadeh, A.; Salemi, A.; Assadi, H. Mechanical behavior of CrMo steel with tempered martensite and ferrite–bainite–martensite microstructure. Mater. Sci. Eng. A 2008, 483–484, 325–328. [Google Scholar] [CrossRef]
- Itoh, H.; Ochi, M.; Fujiwara, I.; Momoo, T. SCC Life Estimation Based on Cracks Initiated from the Corrosion Pits of Bolting Material SCM435 Used in Steam Turbine. JSME Int. J. Ser. B Fluids Therm. Eng. 2004, 47, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Saroja, S.; Parameswaran, P.; Vijayalakshmi, M.; Raghunathan, V.S. Prediction of microstructural states in Cr-Mo steels using phase evolution diagrams. Acta Metall. Mater. 1995, 43, 2985–3000. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Hung, F.Y.; Lui, T.S.; Chen, L.H. Microstructures and Mechanical Properties of Austempering Cr–Mo (SCM 435) Alloy Steel. Mater. Trans. 2013, 54, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, F.; Li, C.; Lin, Y.; Cao, R. Effect of Martensite Structure and Carbide Precipitates on Mechanical Properties of Cr-Mo Alloy Steel with Different Cooling Rate. High Temp. Mater. Process. 2019, 38, 113–124. [Google Scholar] [CrossRef]
- Thakare, A.S.; Butee, S.P.; Dhanorkar, R.; Kambale, K.R. Phase transformations and mechanical properties of thermomechanically processed 34CrMo4 steel. Heliyon 2019, 5, e01610. [Google Scholar] [CrossRef] [Green Version]
- Pugh, S.F.; Little, E.A. Ferritic steels for fast reactor steam generators. Nucl. Energy 1978, 17, 179–183. [Google Scholar]
- Hardness, A.B. Standard Test Method for Microindentation Hardness of Materials; ASTM Committee: West Conshohocken, PA, USA, 1999; Volume 384, p. 399. [Google Scholar]
- Swetlana, S.; Khatavkar, N.; Singh, A.K. Development of Vickers hardness prediction models via microstructural analysis and machine learning. J. Mater. Sci. 2020, 55, 15845–15856. [Google Scholar] [CrossRef]
- Nam, K.-S.; Hyun, Y.K.; Jo, C.Y.; Cho, Y.J. Mass Effect on the Heat Treated Mechanical Properties of SCM440(H) and SNCM439 Steel. J. Korean Soc. Heat Treat. 2011, 24, 10–15. [Google Scholar]
- Sugimoto, T.; Kawaguchi, T. Development of an automatic Vickers hardness testing system using image processing technology. IEEE Trans. Ind. Electron. 1997, 44, 696–702. [Google Scholar] [CrossRef]
- Araki, I.; Suzuki, K. Automatic measurement of Vickers hardness by microcomputer (I). Bull. Fac. Educ. 1982, 1, 77–83. [Google Scholar]
- Serra, J. Image Processing and Mathematical Morphology; Academic Press: Now York, NY, USA, 1982. [Google Scholar]
- Maier, A.; Niederbrucker, G.; Stenger, S.; Uhl, A. Efficient focus assessment for a computer vision-based Vickers hardness measurement system. J. Electron. Imaging 2012, 21, 021114. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Wang, Z.; Wang, J. A microstructure-informatic strategy for Vickers hardness forecast of austenitic steels from experimental data. Mater. Des. 2021, 201, 109497. [Google Scholar] [CrossRef]
- Jalilian, E.; Uhl, A. Deep Learning Based Automated Vickers Hardness Measurement. In International Conference on Computer Analysis of Images and Patterns; Springer: Cham, Germany, 2021. [Google Scholar]
- Tanaka, Y.; Seino, Y.; Hattori, K. Automated Vickers hardness measurement using convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 109, 1345–1355. [Google Scholar] [CrossRef]
- Tanaka, Y.; Seino, Y.; Hattori, K. Measuring Brinell hardness indentation by using a convolutional neural network. Meas. Sci. Technol. 2019, 30, 065012. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, Q.; Tian, H.; Li, S.; Song, Z.; Li, J. Automatic Measurement Algorithm for Brinell Indentations Based on Convolutional Neural Network. Sens. Mater. 2022, 34, 1043–1056. [Google Scholar] [CrossRef]
- Li, Z.; Yin, F. Automated measurement of Vickers hardness using image segmentation with neural networks. Measurement 2021, 186, 110200. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpanthy, A.; Khosla, A.; Berstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Lathuilière, S.; Mesejo, P.; Alameda-Pineda, X.; Horaud, R. A comprehensive analysis of deep regression. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2065–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; IEEE: Manhattan, NY, USA, 2017. [Google Scholar]
- Wang, X.; Zurob, H.S.; Xu, G.; Ye, Q.; Bouaziz, O.; Embury, D. Influence of Microstructural Length Scale on the Strength and Annealing Behavior of Pearlite, Bainite, and Martensite. Metall. Mater. Trans. A 2012, 44, 1454–1461. [Google Scholar] [CrossRef]
- Azuma, M.; Goutianos, S.; Hansen, N.; Winther, G.; Huang, X. Effect of hardness of martensite and ferrite on void formation in dual phase steel. Mater. Sci. Technol. 2012, 28, 1092–1100. [Google Scholar] [CrossRef]
- Shipway, P.H.; Wood, S.J.; Dent, A.H. The hardness and sliding wear behaviour of a bainitic steel. Wear 1997, 203–204, 196–205. [Google Scholar] [CrossRef]
- Hajizad, O.; Kumar, A.; Li, Z.; Petrov, R.H.; Sietsma, J.; Dollevoet, R. Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications. Metals 2019, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Xia, C. Microstructure Evolution and Mechanical Properties of Medium Carbon Martensitic Steel during Warm Rolling and Annealing Process. Materials 2021, 14, 6900. [Google Scholar] [CrossRef]
- Hättestrand, M.; Nilsson, J.O.; Stiller, K.; Liu, P.; Andersson, M. Precipitation hardening in a 12%Cr–9%Ni–4%Mo–2%Cu stainless steel. Acta Mater. 2004, 52, 1023–1037. [Google Scholar] [CrossRef]
Backbone | Learning Rate | Batch Size |
---|---|---|
AlexNet | 10−5 | 32 |
VGG-16 | 10−5 | 32 |
ResNet-18 | 10−3 | 32 |
SqueezeNet | 10−5 | 32 |
GoogLeNet | 10−3 | 32 |
Backbone | W/O Pre-Trained | W/Pre-Trained | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAEB | MAE | MAEB | |||||||||
S | M | I | S | M | I | S | M | I | S | M | I | |
AlexNet | 15.2 | 20.4 | −5.2 | 13.3 | 13.4 | −0.02 | 10.2 | 15.1 | −4.9 | 11.3 | 11.66 | −0.34 |
VGG-16 | 16.4 | 7.8 | +8.6 | 13.2 | 11.2 | +2 | 9.3 | 7.6 | +1.7 | 6.54 | 5.92 | +0.62 |
ResNet-18 | 10.2 | 9.3 | +0.9 | 11.6 | 11.6 | +0.06 | 8.1 | 7.8 | +0.3 | 11.6 | 11.64 | 0 |
SqueezeNet | 11.8 | 10.7 | +1.1 | 13.6 | 10.6 | +3.06 | 8.5 | 8.1 | +0.4 | 9.94 | 7.26 | +2.68 |
GoogLeNet | 9.5 | 9.3 | +0.2 | 11.7 | 10.5 | +1.22 | 8.1 | 7.9 | +0.2 | 12.4 | 9.32 | +3.08 |
Backbone | W/O Pre-Trained | W/Pre-Trained | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAEB | MAE | MAEB | |||||||||
S | M | I | S | M | I | S | M | I | S | M | I | |
AlexNet | 38.9 | 38.4 | +0.5 | 40.6 | 39.8 | +0.8 | 38.3 | 34.4 | +3.9 | 36.3 | 40.3 | −4 |
VGG-16 | 28.6 | 27.1 | +1.5 | 32.4 | 31.6 | +0.8 | 27.4 | 26.8 | +0.6 | 22.6 | 20.8 | +1.8 |
ResNet-18 | 33.6 | 33.3 | +0.3 | 30.4 | 30.5 | −0.1 | 33.3 | 33.2 | +0.1 | 26.8 | 25.3 | +1.5 |
SqueezeNet | 45.2 | 39.0 | +6.2 | 35.5 | 23.9 | +11.6 | 40.3 | 38.5 | +1.8 | 49.1 | 28.2 | +20.9 |
GoogLeNet | 31.9 | 25.5 | +6.4 | 31.2 | 24.5 | +6.7 | 27.4 | 25.3 | +2.1 | 30.3 | 25.8 | +4.5 |
Backbone | W/O Pre-Trained | W/Pre-Trained | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAEB | MAE | MAEB | |||||||||
S | M | I | S | M | I | S | M | I | S | M | I | |
AlexNet | 36.9 | 36.8 | +0.1 | 34.7 | 34.0 | +0.7 | 30.1 | 29.9 | +0.2 | 28.0 | 28.8 | −0.8 |
VGG-16 | 32.0 | 30.7 | +1.5 | 28.6 | 28.3 | +0.3 | 20.1 | 19.7 | +0.4 | 20.1 | 20.0 | +0.1 |
ResNet-18 | 30.1 | 30.0 | +0.1 | 27.6 | 27.6 | 0 | 30.2 | 30.1 | +0.1 | 26.3 | 26.3 | 0 |
SqueezeNet | 37.1 | 27.0 | +10.1 | 34.4 | 23.4 | +11.0 | 22.3 | 21.2 | +1.1 | 22.1 | 21.1 | +1.0 |
GoogLeNet | 27.6 | 25.6 | +2.0 | 22.3 | 25.1 | +2.8 | 32.0 | 25.7 | +6.3 | 28.5 | 24.1 | +4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.-S.; Chen, G.-Y.; Shih, X.-Y.; Elsisi, M.; Tsai, M.-H.; Dai, H.-J. Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation. Appl. Sci. 2022, 12, 10820. https://doi.org/10.3390/app122110820
Cheng W-S, Chen G-Y, Shih X-Y, Elsisi M, Tsai M-H, Dai H-J. Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation. Applied Sciences. 2022; 12(21):10820. https://doi.org/10.3390/app122110820
Chicago/Turabian StyleCheng, Wan-Shu, Guan-Ying Chen, Xin-Yen Shih, Mahmoud Elsisi, Meng-Hsiu Tsai, and Hong-Jie Dai. 2022. "Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation" Applied Sciences 12, no. 21: 10820. https://doi.org/10.3390/app122110820
APA StyleCheng, W. -S., Chen, G. -Y., Shih, X. -Y., Elsisi, M., Tsai, M. -H., & Dai, H. -J. (2022). Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation. Applied Sciences, 12(21), 10820. https://doi.org/10.3390/app122110820