Spatial Variations in Microfiber Transport in a Transnational River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geographical Setting
2.1.2. Wastewater Management along the Tisza and Its Catchment
2.2. Materials and Methods
2.2.1. Water Sample Collection
2.2.2. Sample Preparation
3. Results
3.1. Suspended Sediment Concentration of the Tisza
3.2. Microplastic Transport of the Tisza in 2021
3.3. Comparison of the Microplastic Transport of the Tisza and Its Tributaries in 2021 and 2022
4. Discussion
4.1. Microplastic Transport of the Tisza River in 2021 and 2022
4.2. Influencing Factors of Microplastic Contamination
4.2.1. Relationship between Suspended Sediment and Microplastic Transport
4.2.2. Downstream Changes in Microplastic Transport
4.2.3. Impoundment and Microplastic Transport
4.2.4. The Role of Tributaries in Suspended Sediment and Microplastic Transport
4.2.5. Annual Redistribution of Microplastic Pollution
4.3. Origin of the Microplastics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahandideh, A.; Ashkani, M.; Moini, N. Chapter 8—Biopolymers in textile industries. In Biopolymers and their Industrial Applications; Thomas, S., Gopi, S., Amalraj, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–218. [Google Scholar]
- Cesa, F.S.; Turra, A.; Baruque-Ramos, J. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Sci. Total Environ. 2017, 598, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Ouederni, M. Chapter 10—Polymers in textiles. In Polymer Science and Innovative Applications; AlMaadeed, M.A.A., Ponnamma, D., Carignano, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–363. [Google Scholar]
- Exchange, T. Preferred Fiber & Materials, Market Report. 2021. Available online: https://textileexchange.org/wp-content/uploads/2021/2008/Textile-Exchange_Preferred-Fiber-and-Materials-Market-Report_2021.pdf (accessed on 27 September 2022).
- Deng, H.; Wei, R.; Luo, W.; Hu, L.; Li, B.; Di, Y.; Shi, H. Microplastic pollution in water and sediment in a textile industrial area. Environ. Pollut. 2020, 258, 113658. [Google Scholar] [CrossRef] [PubMed]
- Cordova, M.R.; Nurhati, I.S.; Shiomoto, A.; Hatanaka, K.; Saville, R.; Riani, E. Spatiotemporal macro debris and microplastic variations linked to domestic waste and textile industry in the supercritical Citarum River, Indonesia. Mar. Pollut. Bull. 2022, 175, 113338. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Han, L.; Li, J.; Zhang, H.; Jones, K.; Xu, E.G. Missing relationship between meso- and microplastics in adjacent soils and sediments. J. Hazard. Mater. 2022, 424, 127234. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Tran-Nguyen, Q.A.; Vu, T.B.H.; Nguyen, Q.T.; Nguyen, H.N.Y.; Le, T.M.; Vo, V.M.; Trinh-Dang, M. Urban drainage channels as microplastics pollution hotspots in developing areas: A case study in Da Nang, Vietnam. Mar. Pollut. Bull. 2022, 175, 113323. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Zhao, H.; Sun, H.; Sun, Y.; Zhao, J.; Xia, T. Investigation of microplastics in sludge from five wastewater treatment plants in Nanjing, China. J. Environ. Manag. 2022, 301, 113793. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Tang, Y. Fragmentation of microplastics in the drinking water treatment process - A case study in Yangtze River region, China. Sci. Total Environ. 2022, 806, 150545. [Google Scholar] [CrossRef]
- Fan, Y.; Zheng, J.; Deng, L.; Rao, W.; Zhang, Q.; Liu, T.; Qian, X. Spatiotemporal dynamics of microplastics in an urban river network area. Water Res. 2022, 212, 118116. [Google Scholar] [CrossRef]
- He, B.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Rintoul, L.; Goonetilleke, A. Influential factors on microplastics occurrence in river sediments. Sci. Total Environ. 2020, 738, 139901. [Google Scholar] [CrossRef]
- Vermaire, J.C.; Pomeroy, C.; Herczegh, S.M.; Haggart, O.; Murphy, M. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2017, 2, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.Z.; Watts, A.J.; Winslow, B.O.; Galloway, T.S.; Barrows, A.P. Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA. Mar. Pollut. Bull. 2017, 124, 245–251. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.R.; Hoellein, T.J.; London, M.G.; Hittie, J.; Scott, J.W.; Kelly, J.J. Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere 2016, 7, e01556. [Google Scholar] [CrossRef]
- Tibbetts, J.; Krause, S.; Lynch, I.; Smith, G.H.S. Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water 2018, 10, 1597. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R.L. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres. Sci. Total Environ. 2019, 666, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Le Guen, C.; Suaria, G.; Sherley, R.B.; Ryan, P.G.; Aliani, S.; Boehme, L.; Brierley, A.S. Microplastic study reveals the presence of natural and synthetic fibres in the diet of King Penguins (Aptenodytes patagonicus) foraging from South Georgia. Environ. Int. 2020, 134, 105303. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, A.M.D.; Süsserott, R.; Gabbott, S.E.; Gouramanis, C. Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere. Environ. Pollut. 2022, 310. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, P.; Verma, A.; Jha, P.K.; Singh, P.; Gupta, P.K.; Chandra, R.; Prasad, P.V.V. Effect of Physical Characteristics and Hydrodynamic Conditions on Transport and Deposition of Microplastics in Riverine Ecosystem. Water 2021, 13, 2710. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldschläger, K.; Schüttrumpf, H. Erosion Behavior of Different Microplastic Particles in Comparison to Natural Sediments. Environ. Sci. Technol. 2019, 53, 13219–13227. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tang, Y.; Dang, M.; Wang, S.; Jin, H.; Liu, Y.; Jing, H.; Zheng, C.; Yi, S.; Cai, Z. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2019, 717, 135187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, J.; Xie, Y.; Zhong, S.; Yang, B.; Lu, D.; Zhong, Q. Distribution of microplastics in surface water and sediments of Qin river in Beibu Gulf, China. Sci. Total Environ. 2020, 708, 135176. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Wang, J.; Su, L.; Wang, X.; Zhu, J.; Lan, W. The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China. Ecotoxicol. Environ. Saf. 2021, 228, 113009. [Google Scholar] [CrossRef]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- He, B.; Goonetilleke, A.; Ayoko, G.A.; Rintoul, L. Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia. Sci. Total Environ. 2020, 700, 134467. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Lei, Q.; Zhao, Y.; Wang, L.; Wang, X.; Zhang, W. Microplastic pollution in sophisticated urban river systems: Combined influence of land-use types and physicochemical characteristics. Environ. Pollut. 2021, 287, 117604. [Google Scholar] [CrossRef]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef] [Green Version]
- Pol, W.; Żmijewska, A.; Stasińska, E.; Zieliński, P. Spatial–temporal distribution of microplastics in lowland rivers flowing through two cities (Ne Poland). Water Air Soil Pollut. 2022, 233, 140. [Google Scholar] [CrossRef]
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, T.; Fórián, S.; Szatmári, G.; Sipos, G. Spatial distribution of microplastics in the fluvial sediments of a transboundary river—A case study of the Tisza River in Central Europe. Sci. Total Environ. 2021, 785, 147306. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2019, 707, 135578. [Google Scholar] [CrossRef] [PubMed]
- Bordós, G.; Urbányi, B.; Micsinai, A.; Kriszt, B.; Palotai, Z.; Szabó, I.; Hantosi, Z.; Szoboszlay, S. Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. Chemosphere 2019, 216, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Gönczy, S.; Nagy, T.; Mesaroš, M.; Balla, A. Deposition and Mobilization of Microplastics in a Low-Energy Fluvial Environment from a Geomorphological Perspective. Appl. Sci. 2022, 12, 4367. [Google Scholar] [CrossRef]
- Watkins, L.; McGrattan, S.; Sullivan, P.J.; Walter, M.T. The effect of dams on river transport of microplastic pollution. Sci. Total Environ. 2019, 664, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Barrows, A.P.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef]
- Rodrigues, M.; Abrantes, N.; Gonçalves, F.; Nogueira, H.; Marques, J.; Gonçalves, A. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci. Total Environ. 2018, 633, 1549–1559. [Google Scholar] [CrossRef]
- Crew, A.; Gregory-Eaves, I.; Ricciardi, A. Distribution, abundance, and diversity of microplastics in the upper St. Lawrence River. Environ. Pollut. 2020, 260, 113994. [Google Scholar] [CrossRef]
- Buwono, N.R.; Risjani, Y.; Soegianto, A. Distribution of microplastic in relation to water quality parameters in the Brantas River, East Java, Indonesia. Environ. Technol. Innov. 2021, 24, 101915. [Google Scholar] [CrossRef]
- Schmidt, C.; Kumar, R.; Yang, S.; Büttner, O. Microplastic particle emission from wastewater treatment plant effluents into river networks in Germany: Loads, spatial patterns of concentrations and potential toxicity. Sci. Total Environ. 2020, 737, 139544. [Google Scholar] [CrossRef] [PubMed]
- Sucharitakul, P.; Pitt, K.A.; Welsh, D.T. Assessment of microplastics in discharged treated wastewater and the utility of Chrysaora pentastoma medusae as bioindicators of microplastics. Sci. Total Environ. 2021, 790, 148076. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Sun, Y.; Liu, Q.; Lin, C.; Sun, X.; He, Q.; Zhou, K.; Lin, H. Riverine microplastic pollution matters: A case study in the Zhangjiang River of Southeastern China. Mar. Pollut. Bull. 2020, 159, 111516. [Google Scholar] [CrossRef]
- Chen, H.L.; Gibbins, C.N.; Selvam, S.B.; Ting, K.N. Spatio-temporal variation of microplastic along a rural to urban transition in a tropical river. Environ. Pollut. 2021, 289, 117895. [Google Scholar] [CrossRef] [PubMed]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res. 2019, 160, 228–237. [Google Scholar] [CrossRef]
- Fehér, J. Updated Integrated Tisza River Basin Management Plan; GWP Global Water Partnership: Stockholm, Sweden, 2019. [Google Scholar]
- Lászlóffy, W. A Tisza: Vízi Munkálatok és Vízgazdálkodás a Tiszai Vízrendszerben; Akadémiai Kiadó: Budapest, Hungary, 1982. [Google Scholar]
- Bogárdi, J.L. Fluvial Sediment Transport. In Advances in Hydroscience; Chow, V.T., Ed.; Advances in Hydroscience; Elsevier: Amsterdam, The Netherlands, 1972; Volume 8, pp. 183–259. [Google Scholar]
- Mohsen, A.; Kovács, F.; Mezősi, G.; Kiss, T. Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images. Water 2021, 13, 3132. [Google Scholar] [CrossRef]
- Andó, M. A Tisza Vízrendszer Hidrogeográfiája; SZTE Természeti Földrajzi Tanszék: Szeged, Hungary, 2002; p. 168. (In Hungarian) [Google Scholar]
- Tarpai, J. A Természeti és Társadalmi Erőforrások Szerepe Kárpátalja Turizmusfejlesztésében és Hatása a Területfejlesztésre; University of Pécs: Pécs, Hungarian, 2013. [Google Scholar]
- Association R.W. Municipal Water and Wastewater Treatment Sector in the context of the EU Environmental Policy. 2011. Available online: https://www.yumpu.com/en/document/read/49722811/romanian-water-association (accessed on 27 September 2022).
- European Court of AUDITORS. EU-Funding of Urban Waste Water Treatment Plants in the Danube River Basin: Further Efforts Needed in Helping Member States to Achieve EU Waste Water Policy Objectives 2015. Available online: https://www.eca.europa.eu/Lists/ECADocuments/SR15_02/SR_DANUBE_RIVER_EN.pdf (accessed on 27 September 2022).
- KSH. Térképes Interaktív Megjelenítő Alekalmazás. 2022. Available online: https://map.ksh.hu/timea/?locale=hu (accessed on 27 September 2022).
- Parrag, T.K. Mikroműanyagok előfordulása és kockázatuk csökkentése (Abundance and harmfullness of the microplastics). Védelem Tudomány 2021, 6, 19. [Google Scholar]
- TÉRPORT. Magyarország régiói. Available online: http://www.terport.hu/regiok/magyarorszag-regioi (accessed on 27 September 2022).
- Hohner, K. Mikroműanyagok Vizsgálata Szennyvíziszapból Készült Komposztban (Microplastics in the Sewage Sludge); University of Szeged: Szeged, Hungary, 2021. [Google Scholar]
- D3977-97R07; Standard Test Method for Determining Sediment Concentration in Water Samples; ASTM: West Conshohocken, PA, USA, 2007. [CrossRef]
- Dramais, G.; Camenen, B.; Le Coz, J.; Thollet, F.; Le Bescond, C.; Lagouy, M.; Buffet, A.; Lacroix, F. Comparison of standardized methods for suspended solid concentration measurements in river samples. E3S Web Conf. 2018, 40, 04018. [Google Scholar] [CrossRef] [Green Version]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- MERI. Guide to Microplastic Identification; Marine and Environmental Research Institute: Blue Hill, ME, USA, 2017; p. 15. [Google Scholar]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- De Witte, B.; Devriese, L.; Bekaert, K.; Hoffman, S.; Vandermeersch, G.; Cooreman, K.; Robbens, J. Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Mar. Pollut. Bull. 2014, 85, 146–155. [Google Scholar] [CrossRef] [PubMed]
- KSH. A Települések Infrastrukturális Ellátottsága. 2019. Available online: https://www.ksh.hu/docs/hun/xftp/stattukor/telepinfra/2019/index.html (accessed on 27 September 2022).
- Csépes, E.; Nagy, M.; Bancsi, I.; Végvári, P.; Kovács, P.; Szilágyi, E. The phases of water quality characteristics in the middle section of river Tisza in the light of the greatest flood of the century. Hidrológiai Közlöny 2000, 80, 285–287. (In Hungarian) [Google Scholar]
- Mohsen, A.; Kovács, F.; Kiss, T. Remote Sensing of Sediment Discharge in Rivers Using Sentinel-2 Images and Machine-Learning Algorithms. Hydrology 2022, 9, 88. [Google Scholar] [CrossRef]
- Tian, P.; Zhai, J.; Zhao, G.; Mu, X. Dynamics of Runoff and Suspended Sediment Transport in a Highly Erodible Catchment on the Chinese Loess Plateau. Land Degrad. Dev. 2016, 27, 839–850. [Google Scholar] [CrossRef]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef] [PubMed]
- Constant, M.; Ludwig, W.; Kerhervé, P.; Sola, J.; Charrière, B.; Sanchez-Vidal, A.; Canals, M.; Heussner, S. Microplastic fluxes in a large and a small Mediterranean river catchments: The Têt and the Rhône, Northwestern Mediterranean Sea. Sci. Total Environ. 2020, 716, 136984. [Google Scholar] [CrossRef]
- Mani, T.; Burkhardt-Holm, P. Seasonal microplastics variation in nival and pluvial stretches of the Rhine River – From the Swiss catchment towards the North Sea. Sci. Total Environ. 2020, 707, 135579. [Google Scholar] [CrossRef]
- De Carvalho, A.R.; Garcia, F.; Riem-Galliano, L.; Tudesque, L.; Albignac, M.; ter Halle, A.; Cucherousset, J. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River. Sci. Total Environ. 2021, 769, 144479. [Google Scholar] [CrossRef] [PubMed]
- Knighton, D. Fluvial Forms and Processes: A New Perspective, 2nd ed.; Routledge: London, UK, 1998; p. 400. [Google Scholar]
- Kiss, T.; Sipos, G.; Fiala, K. Az Alföld töltések közé szorított folyói. In Környezeti változások és az Alföld. A Nagyalföld Alapítvány Kötetei; Rakonczai, J., Ed.; Nagyalföld Alapítvány Kötetei: Békéscsaba, Hungary, 2011; Volume 7, pp. 211–222. [Google Scholar]
- Sefcsich, G. Energiaszolgáltatás (áram, gáz, hő, víz, hulladék). In Kistérségek Életereje—Délvidéki Fejlesztési Lehetőségek; Gábrity Molnár, I.R., András, Eds.; Regionális Tudományi Társaság: Szabadka, Hungary, 2006; pp. 191–192. [Google Scholar]
- Liu, Y.; Zhang, J.; Tang, Y.; He, Y.; Li, Y.; You, J.; Breider, F.; Tao, S.; Liu, W. Effects of anthropogenic discharge and hydraulic deposition on the distribution and accumulation of microplastics in surface sediments of a typical seagoing river: The Haihe River. J. Hazard. Mater. 2020, 404, 124180. [Google Scholar] [CrossRef]
- Gerolin, C.R.; Pupim, F.N.; Sawakuchi, A.O.; Grohmann, C.H.; Labuto, G.; Semensatto, D. Microplastics in sediments from Amazon rivers, Brazil. Sci. Total Environ. 2020, 749, 141604. [Google Scholar] [CrossRef]
- Xu, Y.; Chan, F.K.S.; Johnson, M.; Stanton, T.; He, J.; Jia, T.; Wang, J.; Wang, Z.; Yao, Y.; Yang, J.; et al. Microplastic pollution in Chinese urban rivers: The influence of urban factors. Resour. Conserv. Recycl. 2021, 173, 105686. [Google Scholar] [CrossRef]
- Luo, W.; Su, L.; Craig, N.J.; Du, F.; Wu, C.; Shi, H. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environ. Pollut. 2019, 246, 174–182. [Google Scholar] [CrossRef]
- Li, J.; Ouyang, Z.; Liu, P.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China. Sci. Total Environ. 2021, 773, 145591. [Google Scholar] [CrossRef]
Upper Tisza | Middle Tisza | Lower Tisza | Tributaries | ||||
---|---|---|---|---|---|---|---|
Year | Average | S1 | S2 | S3 | S4 | S5 | |
2021 | 19 ± 13.6 | 39 ± 31.1 | 18.6 ± 14.2 | 15.8 ± 13.8 | 14.5 ± 7.9 | 22.6 ± 10.1 | no data |
2022 | 22.4 ± 14.8 | no data | 30.5 ± 20.5 | 16.5 ± 6.6 | 21.1 ± 17.8 | 27.6 ± 14.2 | 27 ± 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balla, A.; Mohsen, A.; Gönczy, S.; Kiss, T. Spatial Variations in Microfiber Transport in a Transnational River Basin. Appl. Sci. 2022, 12, 10852. https://doi.org/10.3390/app122110852
Balla A, Mohsen A, Gönczy S, Kiss T. Spatial Variations in Microfiber Transport in a Transnational River Basin. Applied Sciences. 2022; 12(21):10852. https://doi.org/10.3390/app122110852
Chicago/Turabian StyleBalla, Alexia, Ahmed Mohsen, Sándor Gönczy, and Tímea Kiss. 2022. "Spatial Variations in Microfiber Transport in a Transnational River Basin" Applied Sciences 12, no. 21: 10852. https://doi.org/10.3390/app122110852
APA StyleBalla, A., Mohsen, A., Gönczy, S., & Kiss, T. (2022). Spatial Variations in Microfiber Transport in a Transnational River Basin. Applied Sciences, 12(21), 10852. https://doi.org/10.3390/app122110852