Performance of Lunar Regolith Shield under Meteoroid Impact: Uncertainties of a Numerical Prediction
Abstract
:1. Introduction
- The characteristics of the impact, in terms of force-time history.
- The geotechnical properties of the soil, controlling the load propagation through the layer.
- Uncertainties related to the calculation model.
2. Material
3. Methods
4. Results
4.1. Incidence of the Strain Interval Adopted for Stiffness Determination
4.2. Incidence of the Assumed Collision Duration
5. Conclusions
- -
- For the assumed impact, the discrepancy in terms of maximum stress at the layer bottom related to the implemented regolith stiffness is 43–52% of the average value, depending on the damping assumption.
- -
- This discrepancy is comparable with the percentage differences in terms of maximum stress (at the bottom) between the loading vertical and a vertical 2m far: for the case of stiffness 33 MPa and force 360 kN, for example, they are 38–43%, depending on the damping assumption.
- -
- Changing the collision duration of one order of magnitude, for a given stiffness, leads to changes in maximum stress at the bottom of one order of magnitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benaroya, H. Turning Dust to Gold. Building a Future on the Moon and Mars; Springer-Praxis Books in Space Exploration, Praxis Publishing Ltd.: Chichester, UK, 2010. [Google Scholar]
- Jablonski, A.M.; Ogden, K.A. Technical Requirements for Lunar Structures. J. Aerosp. Eng. 2008, 21, 72–90. [Google Scholar] [CrossRef]
- Ruess, F.; Schänzlin, J.; Benaroya, H. Structural Design of a Lunar Habitat. J. Aerosp. Eng. 2006, 19, 133–157. [Google Scholar] [CrossRef]
- Roberts, M. Inflatable Habitation for the Lunar Base; NASA Conf. Publ. No. 3166; NASA: Washington, DC, USA, 1988.
- Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Ceccanti, F.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. 3D Printing Technology for a Moon Outpost Exploiting Lunar Soil. In Proceedings of the 61st International Astronautical Congress, Prague, Czech, 23–27 September 2013. [Google Scholar]
- Fateri, M.; Sottong, R.; Kolbe, M.; Gamer, J.; Sperl, M.; Cowley, A. Thermal properties of processed lunar regolith simulant. Int. J. Appl. Ceram. Technol. 2019, 16, 2419–2428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, D.; Zhang, G.; Shao, G.; Li, L. 3D printing lunar architecture with a novel cable-driven printer. Acta Astronaut. 2021, 189, 671–678. [Google Scholar] [CrossRef]
- Goldsmith, W. Impact; Courier Dover Publications: London, UK, 1960. [Google Scholar]
- Timoshenko, S.P. Zur Frage nach der Wirkung eines Stosses auf einen Balken. Z. Math. Phys. 1913, 62, 198. [Google Scholar]
- Gionet, T. Structural Response of a Frame-Membrane Lunar Habitat; LAP LAMBERT Academic Publishing GmbH & Co. KG: Saarbrücken, Germany, 2012. [Google Scholar]
- Allen, W.A.; Mayfield, E.B.; Morrison, H.L. Dynamics of a Projectile Penetrating Sand. J. Appl. Phys. 1957, 28, 370–376. [Google Scholar] [CrossRef]
- Eckart, P. The Lunar Base Handbook; Larson, W.J., Ed.; McGraw-Hill: Montreal, QC, Canada, 1999. [Google Scholar]
- Jablonski, A.M.; Ogden, K.A. A Review of Technical Requirements for Lunar Structures–Present Status. In Proceedings of the International Lunar Conference, Toronto, ON, Canada, 18–23 September 2005. published 2006. [Google Scholar]
- Lindsey, N.J. Lunar Station Protection: Lunar Regolith Shielding. In International Lunar Exploration Working Group 5-ILC2003/ILEWG 5, Proceedings of the International Lunar Conference, Waikoloa, HI, USA, 16–22 November 2003; Durst, S.M., Bohannan, C.T., Thomason, C.G., Cerney, M.R., Yuen, L., Eds.; AAS: San Diego, CA, USA, 2003; pp. 143–148. [Google Scholar]
- National Aeronautics and Space Administration (NASA). Apollo 16 Preliminary Science Report. 1972. Available online: http://www.history.nasa.gov/alsj/a16/as16psr.pdf (accessed on 18 October 2022).
- Goldman, D.I.; Umbanhowar, P. Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 2008, 77, 021308. [Google Scholar] [CrossRef] [Green Version]
- Ambroso, M.A.; Kamien, R.D.; Durian, D.J. Dynamics of shallow impact cratering. Phys. Rev. E 2005, 72, 041305. [Google Scholar] [CrossRef] [Green Version]
- Tsimring, L.S.; Volfson, D. Powders and Grains 2005; García-Rojo, R., Herrmann, H.J., McNamara, S., Balkema, A.A., Eds.; Routledge: Rotterdam, The Netherlands, 2005; Volume 2, pp. 1215–1223. [Google Scholar]
- Ricchetti, D.; Marzulli, V.; di Lernia, A.; Adamo, F.; Cafaro, F. Impiego di Sensori Piezoresistivi per la Misura Della Diffusione di carichi Impulsivi in Sabbia; IARG: Genova, Italy, 2018. [Google Scholar]
- Rickman, S.L.; Richards, W.L.; Christiansen, E.L.; Piazza, A.; Pena, F.; Parker, A.R. Micrometeoroid/Orbital Debris (MMOD) Impact Detection and Location Using Fiber Optic Bragg Grating Sensing Technology. Procedia Eng. 2017, 188, 233–240. [Google Scholar] [CrossRef]
- Gudkova, T.; Lognonné, P.; Miljković, K.; Gagnepain-Beyneix, J. Impact cutoff frequency–momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 2015, 427, 57–65. [Google Scholar] [CrossRef]
- Zhou, P.; Zhao, Z.; Wei, G.; Huo, H.-Y. Two Simulated Spectral Databases of Lunar Regolith: Method, Validation, and Application. Remote Sens. 2022, 14, 277. [Google Scholar] [CrossRef]
- Atkinson, J.H. Non-linear soil stiffness in routine design. Géotechnique 2000, 50, 487–508. [Google Scholar] [CrossRef]
- Atkinson, J.H.; Sallfors, G. Experimental Determination of Soil Properties. In Proceedings of the 10th ECSMFE, Florence, Italy, 26–30 May 1991; Volume 3, pp. 915–956. [Google Scholar]
- Mair, R.J. Developments in geotechnical engineering research: Applications to tunnels and deep excavations. Unwin Memorial Lecture 1992. Proc. Inst. Civ. Eng.-Civ. Eng. 1993, 3, 27–41. [Google Scholar]
- Torres Cisneros, L.A.; Marzulli, V.; Windows-Yule, C.R.K.; Pöschel, T. Impact in granular matter: Force at the base of a container made with one movable wall. Phys. Rev. E 2020, 102, 012903. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.S.; Masuya, H. Finite element analysis of the dynamic behavior of sand-filled geocells subjected to impact load by rockfall. Int. J. Eros. Control. Eng. 2013, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Marzulli, V.; Torres Cisneros, L.A.; di Lernia, A.; Windows-Yule, C.R.K.; Cafaro, F.; Pöschel, T. Impact on granular bed: Validation of discrete element modeling results by means of two-dimensional finite element analysis. Granul. Matter 2020, 22, 27. [Google Scholar] [CrossRef]
- Marzulli, V.; Cafaro, F. Geotechnical Properties of Uncompacted DNA-1A Lunar Simulant. J. Aerosp. Eng. 2019, 32, 2. [Google Scholar] [CrossRef] [Green Version]
- Marzulli, V.; Sandeep, C.S.; Senetakis, K.; Cafaro, F.; Pöschel, T. Scale and water effects on the friction angles of two granular soils with different roughness. Powder Technol. 2021, 377, 813–826. [Google Scholar] [CrossRef]
- Meurisse, A.; Beltzung, J.C.; Kolbe, M.; Cowley, A.; Sperl, M. Influence of Mineral Composition on Sintering Lunar Regolith. J. Aerosp. Eng. 2017, 30, 04017014. [Google Scholar] [CrossRef]
- Sandeep, C.S.; Marzulli, V.; Cafaro, F.; Senetakis, K.; Pöschel, T. Micromechanical Behavior of DNA-1A Lunar Regolith Simulant in Comparison to Ottawa Sand. J. Geophys. Res. Solid Earth 2019, 124, 1–24. [Google Scholar] [CrossRef]
- Jiang, M.; Xi, B.; Arroyo, M.; Rodriguez-Dono, A. DEM simulation of soil-tool interaction under extraterrestrial environmental effects. J. Terramech. 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Perko, H.A.; Nelson, J.D.; Sadeh, W.Z. Surface cleanliness effect on lunar soil shear strength. J. Geotech. Geoenvironmental Eng. 2001, 127, 371–383. [Google Scholar] [CrossRef]
- Bromwell, L.G. The Friction of Quartz in High Vacuum; Research in Earth Physics Phase Report No. 7, R66-18; Department of Civil Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 1966. [Google Scholar]
- Nelson, J.D. Environmental Effects on Engineering Properties of Simulated Lunar Soils. Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA, 1967. [Google Scholar]
- Johnson, B.V.; Roepke, W.W.; Strebig, K.C. Shear Testing of Simulated Lunar Soil in Ultrahigh Vacuum; Report No. NASA-CR-09-040-001; U.S. Bureau of Mines: Washington, DC, USA, 1973.
- Johnson, S.W.; Lee, D.G.; Pyrz, A.P.; Thompson, J.E. Simulating the effects of gravitational field and atmosphere on behavior of granular media. J. Spacecr. Rocket. 1970, 7, 1311. [Google Scholar] [CrossRef]
- Bolton, M.D. The strength and dilatancy of sands. Géotechnique 1986, 36, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Alshibli, K.A.; Hasan, A. Strength properties of JSC-1A lunar regolith simulant. J. Geotech. Geoenvironmental Eng. 2009, 135, 673–679. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H. Mechanical characteristics of a lunar regolith simulant at low confining pressure. Environ. Earth Sci. 2014, 71, 3697–3703. [Google Scholar] [CrossRef]
- Colwell, J.E.; Batiste, S.; Hora´nyi, M.; Robertson, S.; Sture, S. Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys. 2007, 45, RG2006/2007. [Google Scholar] [CrossRef]
- Perkins, S.W. Modeling of regolith structure interaction in extraterrestrial constructed facilities. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 1991. [Google Scholar]
- Klosky, J.L.; Sture, S.; Ko, H.Y.; Barnes, F. Geotechnical behaviour of JSC-1 lunar soil simulant. J. Aerosp. Eng. 2000, 13, 133–138. [Google Scholar] [CrossRef]
- Sabuwala, T.; Butcher, C.; Gustavo, G.; Chakraborty, P. Ray Systems in Granular Cratering. Phys. Rev. Lett. 2018, 120, 264501. [Google Scholar] [CrossRef] [Green Version]
- Kadono, T.; Suzuki, A.I.; Wada, K.; Mitani, N.K.; Yamamoto, S.; Arakawa, M.; Sugita, S.; Haruyama, J.; Nakamura, A.M. Crater-ray formation by impact-induced ejecta particles. Icarus 2015, 250, 215–221. [Google Scholar] [CrossRef]
- Hayashida, K.B.; Robinson, J.H. Single Wall Penetration Equations. In NASA Technical Memorandum 103565; George C. Marshall Space Flight Center, NASA: Huntsville, AL, USA, 1991. Available online: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920007464_1992007464.pdf (accessed on 18 October 2022).
- Slyuta, E.N. Physical and mechanical properties of the lunar soil (a review). Sol. Syst. Res. 2014, 48, 330–353. [Google Scholar] [CrossRef]
- Lysmer, J.; Kuhlemeyer, R.L. Finite Dynamic Model for Infinite Media. J. Eng. Mech. Div. 1969, 95, 859–878. [Google Scholar] [CrossRef]
- Guo, P. Effect of density and compressibility on Ko of cohesionless soils. Acta Geotech. 2010, 5, 225–238. [Google Scholar] [CrossRef]
- Bauer, E. Calibration of a comprehensive constitutive equation for granular materials. Soils Found 1996, 36, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Bauer, E. The Critical State Concept in Hypoplasticity. In Proceedings of the international conference on computer methods advances in Geomech, Wuhan, China, 2–7 November 1997; pp. 691–696. [Google Scholar]
- von Wolffersdorff, P.-A. A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1996, 1, 251–271. [Google Scholar] [CrossRef]
- Senetakis, K.; Anastasiadis, A.; Pitilakis, K. Normalized shear modulus reduction and damping ratio curves of quartz sand and rhyolitic crushed rock. Soils Found. 2013, 53, 879–893. [Google Scholar] [CrossRef] [Green Version]
- Kuhlemeyer, R.L.; Lysmer, J. Finite element method accuracy for wave propagation problems. J. Soil Mech. Found. Div. 1973, 99, 421–427. [Google Scholar] [CrossRef]
- Brinkgreve, R.B.J.; Kumarswamy, S.; Swilfs, W.M. PLAXIS 2D Manual; Plaxis bv: Delft, The Netherlands, 2016. [Google Scholar]
- International Space University (ISU). Autonomous Lunar Transport Vehicle; Design Project Report, ISU: Strasbourg, France, 2000. [Google Scholar]
- Cintala, M.J.; Grieve, R.A.F. Scaling impact melting and crater dimensions: Implications for the lunar cratering record. Meteorit. Planet. Sci. 1998, 33, 889–912. [Google Scholar] [CrossRef]
E (kPa) | p’ (kPa) | Axial Strain Interval (%) |
---|---|---|
42,065 | 158 | 0.17 |
19,814 | 102 | 0.25 |
9537 | 102 | 0.56 |
7828 | 67 | 0.53 |
7183 | 60 | 0.27 |
6057 | 43 | 0.20 |
34,129 a | 41 | 6.2094 × 10−3 |
33,077 a | 21 | 6.01343 × 10−3 |
Friction angle | 54° |
Cohesion | 0 |
Dilatancy angle | 20° |
Earth pressure coefficient at rest | 0.3 |
Poisson’s ratio | 0.2 [49] |
Void ratio | 0.94 |
Density | 1.39 g/cm3 |
Young modulus | 33 MPa; 6 MPa |
Rayleigh damping parameter α | 0.1232 [20] |
Rayleigh damping parameter β | 0.6410 × 10−3 [20] |
Investigated Hypotheses of Young Modulus and Collision Duration (or Max Force) | Max Vertical Stress [kN/m²] | |||
---|---|---|---|---|
without Damping | with Damping | |||
Point A | Point B | Point A | Point B | |
33 MPa (0.1 s—360 kN) | 73.0 | 47.3 | 65.8 | 44.8 |
6 MPa (0.1 s—360 kN) | 123.8 | 98.6 | 102.3 | 74.5 |
33 MPa (0.01 s—3600 kN) | 1043.2 | 788.6 | 632.6 | 435.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdino, A.; Arena, O.; Bottiglieri, O.; Cafaro, F.; Dini, E. Performance of Lunar Regolith Shield under Meteoroid Impact: Uncertainties of a Numerical Prediction. Appl. Sci. 2022, 12, 10885. https://doi.org/10.3390/app122110885
Verdino A, Arena O, Bottiglieri O, Cafaro F, Dini E. Performance of Lunar Regolith Shield under Meteoroid Impact: Uncertainties of a Numerical Prediction. Applied Sciences. 2022; 12(21):10885. https://doi.org/10.3390/app122110885
Chicago/Turabian StyleVerdino, Alessia, Oscar Arena, Osvaldo Bottiglieri, Francesco Cafaro, and Enrico Dini. 2022. "Performance of Lunar Regolith Shield under Meteoroid Impact: Uncertainties of a Numerical Prediction" Applied Sciences 12, no. 21: 10885. https://doi.org/10.3390/app122110885
APA StyleVerdino, A., Arena, O., Bottiglieri, O., Cafaro, F., & Dini, E. (2022). Performance of Lunar Regolith Shield under Meteoroid Impact: Uncertainties of a Numerical Prediction. Applied Sciences, 12(21), 10885. https://doi.org/10.3390/app122110885