Topology Optimization Based Material Design for 3D Domains Using MATLAB
Abstract
:1. Introduction
2. Design of Materials by Means of STO
3. Model Order Reduction in Material Design Optimization
3.1. Proper Orthogonal Decomposition
3.2. On-the-Fly Reduced Order Model Construction
3.3. Approximate Reanalysis
4. The MATLAB Code Implementation
4.1. The Seven Components of the UCOpt3D Function
4.1.1. Initialization Section
4.1.2. Interpolation Section
4.1.3. Homogenization Section
4.1.4. Finite Element Analysis Section
4.1.5. Objective Function—Sensitivity Analysis, Filtering, and Update Scheme Sections
4.2. Model Order Reduction: Code Implementation
5. Test Examples
5.1. 3D Cantilever Test Example
5.2. 3D Wheel Test Example
5.3. MBB Beam Test Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FE | Finite Element |
FEA | Finite Element Analysis |
MOR | Model Order Reduction |
POD | Proper Orthogonal Decomposition |
SIMP | Solid Isotropic Material with Penalization |
STO | Structural Topology Optimization |
SVD | Singular Value Decomposition |
References
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Tovar, A. An efficient 3D topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2014, 50, 1175–1196. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Sigmund, O. A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Struct. Multidiscip. Optim. 2020, 62, 2211–2228. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y. A futher review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 2010, 41, 671–683. [Google Scholar] [CrossRef]
- Challis, V.J. A discrete level-set topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2010, 41, 453–464. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S. Matlab code for a level-set based topology optimization method using a reaction diffusion equation. Struct. Multidiscip. Optim. 2014, 51, 1159–1172. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.; Li, Z.; Li, X.; Wang, M.Y. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Struct. Multidiscip. Optim. 2018, 58, 831–849. [Google Scholar] [CrossRef]
- Talischi, C.; Paulino, G.H.; Pereira, A.; Menezes, I.F.M. PolyTop: A Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct. Multidiscip. Optim. 2012, 45, 329–357. [Google Scholar] [CrossRef]
- Chi, H.; Pereira, A.; Meneze, I.F.M.; Paulino, G.H. Virtual element method (VEM)-based topology optimization: An intergrated framework. Struct. Multidiscip. Optim. 2020, 62, 1089–1114. [Google Scholar] [CrossRef]
- Andreassen, E.; Andreasen, C.S. How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 2014, 83, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Guoying, D.; Yunlong, T.; Yaoyao, F.Z. A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in Matlab. J. Eng. Mater. Technol. 2018, 141, 488–495. [Google Scholar] [CrossRef]
- Gao, J.; Luo, Z.; Xia, L.; Gao, L. Concurrent topology optimization of multiscale composite structures in Matlab. Struct. Multidiscip. Optim. 2019, 60, 2621–2651. [Google Scholar] [CrossRef]
- Amir, O.; Aage, N.; Lazarov, B.S. On multigrid-CG for efficient topology optimization. Struct. Multidiscip. Optim. 2014, 419, 815–829. [Google Scholar] [CrossRef]
- Amir, O. Revisiting approximate reanalysis in topology optimization: On the advantages of recycled preconditioning in a minimum weight procedure. Struct. Multidiscip. Optim. 2014, 51, 41–57. [Google Scholar] [CrossRef]
- Kazakis, G.; Lagaros, N.D. A Simple Matlab Code for Material Design Optimization Using Reduced Order Models. Materials 2022, 15, 4972. [Google Scholar] [CrossRef]
- Kazakis, G.; Kanellopoulos, I.; Sotiropoulos, S.; Lagaros, N.D. Topology optimization aided structural design: Interpretation, computational aspects and 3D printing. Heliyon 2017, 3, e00431. [Google Scholar] [CrossRef]
- Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design Aspects of Additive Manufacturing at Microscale: A Review. Micromachines 2022, 13, 775. [Google Scholar] [CrossRef]
- Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424. [Google Scholar] [CrossRef]
- Trefethen, L.N.L.N. Numerical Linear Algebra; Trefethen, L.N., Bau, D., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Amir, O.; Bendsøe, M.P.; Sigmund, O. Approximate reanalysis in topology optimization. Int. J. Numer. Methods Eng. 2008, 78, 1474–1491. [Google Scholar] [CrossRef]
- Kazakis, G.; Lagaros, N.D. Sensitivity Analysis of Model Order Reduction Parameters Applied in Topology Optimization; Technical Report; National Technical University of Athens: Athens, Greece, 2022. [Google Scholar]
- Tovar, A.; Liu, K. Top3dSTL. Version: 3.0. Available online: https://www.top3d.app/ (accessed on 30 August 2022).
Approach | Total Optimization Loops | Full Optimization Loops | Compliance |
---|---|---|---|
FEA | 24 | 24 | 879.40 |
POD | 21 | 11 | 918.18 |
on-the-fly | 21 | 10 | 918.18 |
AR | 24 | 13 | 879.40 |
Approach | Total Optimization Loops | Full Optimization Loops | Compliance |
---|---|---|---|
FEA | 32 | 32 | 429,740 |
POD | 26 | 24 | 500,120 |
on-the-fly | 26 | 24 | 500,120 |
AR | 32 | 10 | 429,740 |
Approach | Total Optimization Loops | Full Optimization Loops | Compliance |
---|---|---|---|
FEA | 49 | 49 | 8762 |
POD | 26 | 19 | 9206 |
on-the-fly | 26 | 20 | 9206 |
AR | 50 | 13 | 8762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazakis, G.; Lagaros, N.D. Topology Optimization Based Material Design for 3D Domains Using MATLAB. Appl. Sci. 2022, 12, 10902. https://doi.org/10.3390/app122110902
Kazakis G, Lagaros ND. Topology Optimization Based Material Design for 3D Domains Using MATLAB. Applied Sciences. 2022; 12(21):10902. https://doi.org/10.3390/app122110902
Chicago/Turabian StyleKazakis, George, and Nikos D. Lagaros. 2022. "Topology Optimization Based Material Design for 3D Domains Using MATLAB" Applied Sciences 12, no. 21: 10902. https://doi.org/10.3390/app122110902
APA StyleKazakis, G., & Lagaros, N. D. (2022). Topology Optimization Based Material Design for 3D Domains Using MATLAB. Applied Sciences, 12(21), 10902. https://doi.org/10.3390/app122110902