Dosimetric Evaluation of the Inter-Fraction Motion of Organs at Risk in SBRT for Nodal Oligometastatic Prostate Cancer
Abstract
:1. Introduction
2. Methods
2.1. Patients and Inclusion Criteria
2.2. Simulation and Treatment Delivery
2.3. Data Processing, Image Registration, and Contouring of Structures of Interest
2.4. Volume Similarity Indexes
2.5. Evaluation of the Volume Variation
2.6. Effect on the Dose
3. Results
3.1. Margin Assignment and Structure Deformation Characterization
3.2. Volume Variation
3.3. Dosimetric Constraint Compliance and Dose Variation
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.S.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [Green Version]
- Gravis, G.; Boher, J.-M.; Chen, Y.-H.; Liu, G.; Fizazi, K.; Carducci, M.A.; Oudard, S.; Joly, F.; Jarrard, D.M.; Soulie, M.; et al. Burden of Metastatic Castrate Naive Prostate Cancer Patients, to Identify Men More Likely to Benefit from Early Docetaxel: Further Analyses of CHAARTED and GETUG-AFU15 Studies. Eur. Urol. 2018, 73, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Tree, A.C.; Khoo, V.S.; Eeles, R.A.; Ahmed, M.; Dearnaley, D.P.; Hawkins, M.A.; Huddart, R.A.; Nutting, C.M.; Ostler, P.J.; van As, N.J. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013, 14, e28–e37. [Google Scholar] [CrossRef]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. JCO 1995, 13, 8–10. [Google Scholar] [CrossRef]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Romero, A.M.; Nevens, D.; Palma, D.; Park, C.; et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, P.G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial. Lancet 2019, 393, 2051–2058. [Google Scholar] [CrossRef]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J. Clin. Oncol. 2018, 36, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Shahi, J.; Poon, I.; Ung, Y.C.; Tsao, M.; Bjarnason, G.A.; Malik, N.H.; Zhang, L.; Louie, A.V.; Cheung, P. Stereotactic Body Radiation Therapy for Mediastinal and Hilar Lymph Node Metastases. Int. J. Radiat. Oncol. 2021, 109, 764–774. [Google Scholar] [CrossRef]
- Sogono, P.; Bressel, M.; David, S.; Shaw, M.; Chander, S.; Chu, J.; Plumridge, N.; Byrne, K.; Hardcastle, N.; Kron, T.; et al. Safety, Efficacy, and Patterns of Failure After Single-Fraction Stereotactic Body Radiation Therapy (SBRT) for Oligometastases. Int. J. Radiat. Oncol. 2020, 109, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Wilke, L.; Andratschke, N.; Blanck, O.; Brunner, T.B.; Combs, S.E.; Grosu, A.L.; Moustakis, C.; Schmitt, D.; Baus, W.W.; Guckenberger, M. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams: Statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlenther. Onkol. 2019, 195, 193–198. [Google Scholar] [CrossRef]
- Wong, A.; Pitroda, S.; Watson, S.; Son, C.; Das, L.; Uppal, A.; Oshima, G.; Stack, M.; Khodarev, N.; Salama, J.; et al. Long-term Survivors of an SBRT Dose-Escalation Study for Oligometastases: Clinical and Molecular Markers. Int. J. Radiat. Oncol. 2015, 93, S64. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Barney, B.M.; Davis, B.J.; Park, S.S.; Kwon, E.D.; Olivier, K.R. Stereotactic body radiation therapy in the treatment of oligometastatic prostate cancer. Front. Oncol. 2013, 2, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkovic, P.; De Meerleer, G.; Delrue, L.; Lambert, B.; Fonteyne, V.; Lumen, N.; Decaestecker, K.; Villeirs, G.; Vuye, P.; Ost, P. Salvage Stereotactic Body Radiotherapy for Patients With Limited Prostate Cancer Metastases: Deferring Androgen Deprivation Therapy. Clin. Genitourin. Cancer 2013, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Schick, U.; Jorcano, S.; Nouet, P.; Rouzaud, M.; Vees, H.; Zilli, T.; Ratib, O.; Weber, D.C.; Miralbell, R. Androgen deprivation and high-dose radiotherapy for oligometastatic prostate cancer patients with less than five regional and/or distant metastases. Acta Oncol. 2013, 52, 1622–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folkert, M.R.; Timmerman, R.D. Stereotactic ablative body radiosurgery (SABR) or Stereotactic body radiation therapy (SBRT). Adv. Drug Deliv. Rev. 2017, 109, 3–14. [Google Scholar] [CrossRef]
- Maggiulli, E.; Fiorino, C.; Passoni, P.; Broggi, S.; Gianolini, S.; Salvetti, C.; Slim, N.; Di Muzio, N.G.; Calandrino, R. Characterisation of rectal motion during neo-adjuvant radiochemotherapy for rectal cancer with image-guided tomotherapy: Implications for adaptive dose escalation strategies. Acta Oncol. 2011, 51, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Harms, W.B.; Low, D.A.; Wong, J.W.; Purdy, J.A. A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med. Phys. 1998, 25, 1830–1836. [Google Scholar] [CrossRef]
- Brock, K.K.; Mutic, S.; McNutt, T.R.; Li, H.; Kessler, M.L. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med. Phys. 2017, 44, e43–e76. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.J.; Gorovets, D.J.; Jacobs, L.M.; Happersett, L.; Zhang, P.; Pei, X.; Burleson, S.; Zhang, Z.; Hunt, M.; McBride, S.; et al. Strict bladder filling and rectal emptying during prostate SBRT: Does it make a dosimetric or clinical difference? Radiat. Oncol. 2020, 15, 239. [Google Scholar] [CrossRef]
- Li, W.; Vassil, A.; Godley, A.; Mossolly, L.M.; Shang, Q.; Xia, P. Using daily diagnostic quality images to validate planning margins for prostate interfractional variations. J. Appl. Clin. Med. Phys. 2016, 17, 61–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elamir, A.M.; Karalis, J.D.; Sanford, N.N.; Polanco, P.M.; Folkert, M.R.; Porembka, M.R.; Kazmi, S.A.; Maddipati, R.; Zeh, H.J.; Timmerman, R.D.; et al. Ablative Radiation Therapy in Oligometastatic Pancreatic Cancer to Delay Polyprogression, Limit Chemotherapy, and Improve Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 792–802. [Google Scholar] [CrossRef]
- Byun, D.; Happersett, L.; Zhang, P.; Pei, X.; McBride, S.; Kollmeier, M.; Zelefsky, M. Variation in Interfractional Bladder Volume during Hypofractionated Radiation Therapy for Prostate Cancer. Int. J. Radiat. Oncol. 2016, 96, E614. [Google Scholar] [CrossRef]
- Jereczek-Fossa, B.A.; Fanetti, G.; Fodor, C.; Ciardo, D.; Santoro, L.; Francia, C.M.; Muto, M.; Surgo, A.; Zerini, D.; Marvaso, G.; et al. Salvage Stereotactic Body Radiotherapy for Isolated Lymph Node Recurrent Prostate Cancer: Single Institution Series of 94 Consecutive Patients and 124 Lymph Nodes. Clin. Genitourin. Cancer 2017, 15, e623–e632. [Google Scholar] [CrossRef]
- Mancosu, P.; Clemente, S.; Landoni, V.; Ruggieri, R.; Alongi, F.; Scorsetti, M.; Stasi, M. SBRT for prostate cancer: Challenges and features from a physicist prospective. Phys. Medica 2016, 32, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Otterson, M.F.; Sarr, M.G. Normal Physiology of Small Intestinal Motility. Surg. Clin. N. Am. 1993, 73, 1173–1192. [Google Scholar] [CrossRef]
- Grivel, M.-L.; Ruckebusch, Y. The propagation of segmental contractions along the small intestine. J. Physiol. 1972, 227, 611–625. [Google Scholar] [CrossRef] [Green Version]
- Karaus, M.; Wienbeck, M. Colonic motility in humans—A growing understanding. Baillière’s Clin. Gastroenterol. 1991, 5, 453–478. [Google Scholar] [CrossRef]
- Nuyttens, J.J.; Robertson, J.M.; Yan, D.; Martinez, A. The position and volume of the small bowel during adjuvant radiation therapy for rectal cancer. Int. J. Radiat. Oncol. 2001, 51, 1271–1280. [Google Scholar] [CrossRef]
- Cuccia, F.; Rigo, M.; Gurrera, D.; Nicosia, L.; Mazzola, R.; Figlia, V.; Giaj-Levra, N.; Ricchetti, F.; Attinà, G.; Pastorello, E.; et al. Mitigation on bowel loops daily variations by 1.5-T MR-guided daily-adaptive SBRT for abdomino-pelvic lymph-nodal oligometastases. J. Cancer Res. Clin. Oncol. 2021, 147, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Nuyttens, J.J.; Robertson, J.M.; Yan, D.; Martinez, A. The variability of the clinical target volume for rectal cancer due to internal organ motion during adjuvant treatment. Int. J. Radiat. Oncol. 2002, 53, 497–503. [Google Scholar] [CrossRef]
- Nijkamp, J.; de Jong, R.; Sonke, J.-J.; Remeijer, P.; van Vliet, C.; Marijnen, C. Target volume shape variation during hypo-fractionated preoperative irradiation of rectal cancer patients. Radiother. Oncol. 2009, 92, 202–209. [Google Scholar] [CrossRef]
- Brierley, J.D.; Dawson, L.A.; Sampson, E.; Bayley, A.; Scott, S.; Moseley, J.L.; Craig, T.; Cummings, B.; Dinniwell, R.; Kim, J.J.; et al. Rectal Motion in Patients Receiving Preoperative Radiotherapy for Carcinoma of the Rectum. Int. J. Radiat. Oncol. 2011, 80, 97–102. [Google Scholar] [CrossRef]
- Yamashita, H.; Takenaka, R.; Sakumi, A.; Haga, A.; Otomo, K.; Nakagawa, K. Analysis of motion of the rectum during preoperative intensity modulated radiation therapy for rectal cancer using cone-beam computed tomography. Radiat. Oncol. 2015, 10, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, I.; Hawkins, M.A.; Hansen, V.; Thomas, K.; McNair, H.; O’Neill, B.; Aitken, A.; Tait, D. Quantification of Organ Motion During Chemoradiotherapy of Rectal Cancer Using Cone-Beam Computed Tomography. Int. J. Radiat. Oncol. 2011, 81, e431–e438. [Google Scholar] [CrossRef] [PubMed]
- Elstrøm, U.V.; Muren, L.P.; Petersen, J.B.B.; Grau, C. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region. Acta Oncol. 2011, 50, 908–917. [Google Scholar] [CrossRef]
- Garayoa, J.; Castro, P. A study on image quality provided by a kilovoltage cone-beam computed tomography. J. Appl. Clin. Med. Phys. 2013, 14, 239–257. [Google Scholar] [CrossRef]
- Grimmer, R.; Krause, J.; Karolczak, M.; Lapp, R.; Kachelriess, M. Assessment of spatial resolution in CT. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 5562–5566. [Google Scholar] [CrossRef]
- Keall, P.J.; Mageras, G.; Balter, J.M.; Emery, R.S.; Forster, K.M.; Jiang, S.B.; Kapatoes, J.M.; Low, D.A.; Murphy, M.J.; Murray, B.R.; et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76a). Med. Phys. 2006, 33, 3874–3900. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.-F.; Wong, J.; Balter, J.; Benedict, S.; Bissonnette, J.-P.; Craig, T.; Dong, L.; Jaffray, D.; Jiang, S.; Kim, S.; et al. The Role of In-Room kV X-ray Imaging for Patient Setup and Target Localization. 2009. Available online: https://www.aapm.org/pubs/reports/detail.asp?docid=104 (accessed on 8 September 2022). [CrossRef]
OAR | Median DSC | Median Mean_DA (cm) | Median V% | Median Optimal Margin (mm) |
---|---|---|---|---|
Cauda | 0.72 | 0.14 | 97.47 | 3 |
Bladder | 0.70 | 0.43 | 97.02 | 8 |
Rectum | 0.68 | 0.33 | 95.39 | 8 |
Ileum | 0.50 | 0.38 | 95.86 | 10 |
Colon | 0.37 | 0.44 | 96.60 | 15 |
OAR (Total # of Patients) | Margin (mm) | ||||||
---|---|---|---|---|---|---|---|
3 | 5 | 8 | 10 | 15 | 20 | ||
Cauda (9) | # | 6 | 8 | 9 | |||
% | 66.67 | 88.89 | 100.00 | ||||
Rectum (17) | # | 2 | 4 | 9 | 12 | 13 | 13 |
% | 11.76 | 23.53 | 52.94 | 70.59 | 76.47 | 76.47 | |
Bladder (9) | # | 2 | 2 | 6 | 6 | 8 | 8 |
% | 22.22 | 22.22 | 66.67 | 66.67 | 88.89 | 88.89 | |
Ileum (20) | # | 0 | 3 | 9 | 12 | 14 | 18 |
% | 0.00 | 15.00 | 45.00 | 60.00 | 70.00 | 90.00 | |
Colon (15) | # | 0 | 1 | 5 | 6 | 10 | 12 |
% | 0.00 | 6.67 | 33.33 | 40.00 | 66.67 | 80.00 |
OAR | Median s-CT Volume (Range) (cc) | Median CBCT Volume (Range) (cc) | Median Volume Variation (%) |
---|---|---|---|
Cauda | 12.54 (3.17–30.72) | 12.76 (2.81–27.96) | −9.51 |
Bladder | 72.03 (44.08–247.42) | 71.29 (24.96–168.39) | −5.55 |
Rectum | 45.72 (7.32–98.01) | 44.61 (5.6–145.21) | −9.82 |
Ileum | 22.04 (6.6–157.38) | 24.6 (3.22–148.06) | 3.79 |
Colon | 17.58 (8.76–74.97) | 16.47 (2.82–124.76) | −16.89 |
OAR | Median s-CT Dmax (Range) (Gy) | Median CBCT Dmax (Range) (Gy) | Median Dmax Variation (%) |
---|---|---|---|
Cauda | 5.54 (0.55–7.32) | 5.66 (0.47–7.32) | −1.87 |
Bladder | 11.14 (0.62–19.55) | 5.89 (0.53–23.20) | −20.09 |
Rectum | 14.57 (0.45–30.14) | 13.90 (2.96–30.51) | −4.11 |
Ileum | 22.19 (5.97–29.62) | 20.31 (6.04–31.90) | −1.38 |
Colon | 11.32 (8.8–30.21) | 13.85 (4.97–30.37) | −3.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Fauci, F.; Augugliaro, M.; Mazzola, G.C.; Comi, S.; Pepa, M.; Zaffaroni, M.; Vincini, M.G.; Corrao, G.; Mistretta, F.A.; Luzzago, S.; et al. Dosimetric Evaluation of the Inter-Fraction Motion of Organs at Risk in SBRT for Nodal Oligometastatic Prostate Cancer. Appl. Sci. 2022, 12, 10949. https://doi.org/10.3390/app122110949
La Fauci F, Augugliaro M, Mazzola GC, Comi S, Pepa M, Zaffaroni M, Vincini MG, Corrao G, Mistretta FA, Luzzago S, et al. Dosimetric Evaluation of the Inter-Fraction Motion of Organs at Risk in SBRT for Nodal Oligometastatic Prostate Cancer. Applied Sciences. 2022; 12(21):10949. https://doi.org/10.3390/app122110949
Chicago/Turabian StyleLa Fauci, Francesco, Matteo Augugliaro, Giovanni Carlo Mazzola, Stefania Comi, Matteo Pepa, Mattia Zaffaroni, Maria Giulia Vincini, Giulia Corrao, Francesco Alessandro Mistretta, Stefano Luzzago, and et al. 2022. "Dosimetric Evaluation of the Inter-Fraction Motion of Organs at Risk in SBRT for Nodal Oligometastatic Prostate Cancer" Applied Sciences 12, no. 21: 10949. https://doi.org/10.3390/app122110949
APA StyleLa Fauci, F., Augugliaro, M., Mazzola, G. C., Comi, S., Pepa, M., Zaffaroni, M., Vincini, M. G., Corrao, G., Mistretta, F. A., Luzzago, S., Fodor, C., Musi, G., Gallo, S., Petralia, G., De Cobelli, O., Orecchia, R., Cattani, F., Marvaso, G., & Jereczek-Fossa, B. A. (2022). Dosimetric Evaluation of the Inter-Fraction Motion of Organs at Risk in SBRT for Nodal Oligometastatic Prostate Cancer. Applied Sciences, 12(21), 10949. https://doi.org/10.3390/app122110949