Heat Conduction Plate Layout Optimization Using Physics-Driven Convolutional Neural Networks
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. U-Net CNN for Temperature Prediction
3.2. Physics-Driven Training Approach
3.3. PSO Algorithm
4. PD-CNN Model Training
5. Prediction and Optimization
5.1. Shape Optimization in the Single-Hole Case
5.2. Position Optimization in the Multiple-Holes Cases
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bendsoe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Chen, K.; Wang, S.; Song, M. Optimization of the heat source distribution for two-dimensional heat conduction using the bionic method. Int. J. Heat Mass Transf. 2016, 93, 108–117. [Google Scholar] [CrossRef]
- Hughes, T.J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Gu, Y.; Wang, L.; Chen, W.; Zhang, C.; He, X. Application of the meshless generalized finite difference method to inverse heat source problems. Int. J. Heat Mass Transf. 2017, 108, 721–729. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Zhou, W.; Zhang, J.; Yao, W. The heat source layout optimization using deep learning surrogate modeling. Struct. Multidiscip. Optim. 2020, 62, 3127–3148. [Google Scholar] [CrossRef]
- Lei, X.; Liu, C.; Du, Z.; Zhang, W.; Guo, X. Machine learning-driven real-time topology optimization under moving morphable component-based framework. J. Appl. Mech. 2019, 86, 011004. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhang, Y.x.; Haydn, O.J.; Thuerey, N.; Hu, X.y. Supervised learning mixing characteristics of film cooling in a rocket combustor using convolutional neural networks. Acta Astronaut. 2020, 175, 11–18. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, B.; Zhang, C.; Haidn, O.J. Generative adversarial networks with physical evaluators for spray simulation of pintle injector. AIP Adv. 2021, 11, 075007. [Google Scholar] [CrossRef]
- Hughes, M.T.; Kini, G.; Garimella, S. Status, challenges, and potential for machine learning in understanding and applying heat transfer phenomena. J. Heat Transf. 2021, 143, 120802. [Google Scholar] [CrossRef]
- Farimani, A.B.; Gomes, J.; Pande, V.S. Deep learning the physics of transport phenomena. arXiv 2017, arXiv:1709.02432. [Google Scholar]
- Tanaka, A.; Tomiya, A.; Hashimoto, K. Deep Learning and Physics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Bourilkov, D. Machine and deep learning applications in particle physics. Int. J. Mod. Phys. A 2019, 34, 1930019. [Google Scholar] [CrossRef] [Green Version]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef]
- Saponara, S.; Elhanashi, A.; Gagliardi, A. Exploiting R-CNN for video smoke/fire sensing in antifire surveillance indoor and outdoor systems for smart cities. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 392–397. [Google Scholar] [CrossRef]
- Saponara, S.; Elhanashi, A.; Zheng, Q. Recreating fingerprint images by convolutional neural network autoencoder architecture. IEEE Access 2021, 9, 147888–147899. [Google Scholar] [CrossRef]
- Bekkerman, R.; Bilenko, M.; Langford, J. Scaling Up Machine Learning: Parallel and Distributed Approaches; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Mitchell, T.; Buchanan, B.; DeJong, G.; Dietterich, T.; Rosenbloom, P.; Waibel, A. Machine learning. Annu. Rev. Comput. Sci. 1990, 4, 417–433. [Google Scholar] [CrossRef]
- Yan, W.; Lin, S.; Kafka, O.L.; Lian, Y.; Yu, C.; Liu, Z.; Yan, J.; Wolff, S.; Wu, H.; Ndip-Agbor, E.; et al. Data-driven multi-scale multi-physics models to derive process–structure-property relationships for additive manufacturing. Comput. Mech. 2018, 61, 521–541. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Duraisamy, K. Machine learning methods for data-driven turbulence modeling. In Proceedings of the 22nd AIAA Computational Fluid Dynamics the conference, Dallas, TX, USA, 22–26 June 2015; p. 2460. [Google Scholar]
- Kirchdoerfer, T.; Ortiz, M. Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 2016, 304, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Christelis, V.; Mantoglou, A. Physics-based and data-driven surrogate models for pumping optimization of coastal aquifers. Eur. Water 2017, 57, 481–488. [Google Scholar]
- Kim, M.; Pons-Moll, G.; Pujades, S.; Bang, S.; Kim, J.; Black, M.J.; Lee, S.H. Data-driven physics for human soft tissue animation. ACM Trans. Graph. (TOG) 2017, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Anzai, Y. Pattern Recognition and Machine Learning; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sosnovik, I.; Oseledets, I. Neural networks for topology optimization. Russ. J. Numer. Anal. Math. Model. 2019, 34, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Park, J.; Sahu, R.; Varadharajan, C.; Arora, B.; Faybishenko, B.; Agarwal, D. Surrogate optimization of deep neural networks for groundwater predictions. J. Glob. Optim. 2020, 81, 203–231. [Google Scholar] [CrossRef]
- There, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows. AIAA J. 2020, 58, 25–36. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Afshar, Y.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of aerodynamic flow fields using convolutional neural networks. Comput. Mech. 2019, 64, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Viquerat, J.; Hachem, E. U-net architectures for fast prediction of incompressible laminar flows. arXiv 2019, arXiv:1910.13532. [Google Scholar]
- Tao, J.; Sun, G. Application of deep learning-based multi-fidelity surrogate model to robust aerodynamic design optimization. Aerosp. Sci. Technol. 2019, 92, 722–737. [Google Scholar] [CrossRef]
- del Rio-Chanona, E.A.; Wagner, J.L.; Ali, H.; Fiorelli, F.; Zhang, D.; Hilliard, K. Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE J. 2019, 65, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Eismann, S.; Bartzsch, S.; Ermon, S. Shape optimization in laminar flow with a label-guided variational autoencoder. arXiv 2017, arXiv:1712.03599. [Google Scholar]
- Li, J.; Zhang, M.; Martins, J.R.; Shu, C. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering. AIAA J. 2020, 58, 4243–4259. [Google Scholar] [CrossRef]
- Chen, L.W.; Cakal, B.A.; Hu, X.; Thuerey, N. Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates. J. Fluid Mech. 2021, 919, A34. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Tao, G.; Li, H.; Zheng, Y.; Cui, J. Optimization of the semi-sphere vortex generator for film cooling using the generative adversarial networks. Int. J. Heat Mass Transf. 2022, 183, 122026. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Thuerey, N.; Hu, X.; Haidn, O.J. Physics-driven learning of the steady Navier-Stokes equations using deep convolutional neural networks. arXiv 2021, arXiv:2106.09301. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Zhu, Y.; Zabaras, N.; Koutsourelakis, P.S.; Perdikaris, P. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef] [Green Version]
- Geneva, N.; Zabaras, N. Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 2020, 403, 109056. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Hu, X.; Zhang, Y.; Thuerey, N.; Haidn, O.J. A Combined Data-driven and Physics-driven Method for Steady Heat Conduction Prediction using Deep Convolutional Neural Networks. arXiv 2020, arXiv:2005.08119. [Google Scholar]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Sun, L.; Gao, H.; Pan, S.; Wang, J.X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lim, J.; Psaltis, D. MaxwellNet: Physics-driven deep neural network training based on Maxwell’s equations. APL Photonics 2022, 7, 011301. [Google Scholar] [CrossRef]
- Sharma, R.; Farimani, A.B.; Gomes, J.; Eastman, P.; Pande, V. Weakly-supervised deep learning of heat transport via physics informed loss. arXiv 2018, arXiv:1807.11374. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Li, X.l. An optimizing method based on autonomous animats: Fish-swarm algorithm. Syst. Eng.-Theory Pract. 2002, 22, 32–38. [Google Scholar]
- Zhang, H.; Yuan, M.; Liang, Y.; Liao, Q. A novel particle swarm optimization based on prey-predator relationship. Appl. Soft Comput. 2018, 68, 202–218. [Google Scholar] [CrossRef]
- Sterling, A. Review of handbook of nature-inspired and innovative computing by Albert Y. Zomaya. ACM SIGACT News 2011, 42, 23–26. [Google Scholar] [CrossRef]
- Kennedy, J. Swarm intelligence. In Handbook of Nature-Inspired and Innovative Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 187–219. [Google Scholar]
- Eberhart; Shi, Y. Particle swarm optimization: Developments, applications, and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea, 27–30 May 2001; Volume 1, pp. 81–86. [Google Scholar]
- Sigmund, O. A 99-line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Mlejnek, H.P.; Schirrmacher, R. An engineer’s approach to optimal material distribution and shape finding. Comput. Methods Appl. Mech. Eng. 1993, 106, 1–26. [Google Scholar] [CrossRef]
- Huang, X.; Xie, M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Mueller, L.; Verstraete, T. Adjoint-based multi-point and multi-objective optimization of a turbocharger radial turbine. Int. J. Turbomach. Propuls. Power 2019, 4, 10. [Google Scholar] [CrossRef]
- Milani, A.; Santucci, V.; Leung, C. Optimizing web content presentation: A online PSO approach. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 15–18 September 2009; Volume 3, pp. 26–29. [Google Scholar]
- Niasar, N.S.; Shanbezade, J.; Perdam, M.; Mohajeri, M. Discrete fuzzy particle swarm optimization for solving traveling salesman problem. In Proceedings of the 2009 International Conference on Information and Financial Engineering, Singapore, 17–20 April 2009; pp. 162–165. [Google Scholar]
Case No. | Number of Holes | Length of Sides | Position |
---|---|---|---|
Case 1 | 1 | 5∼80 | (64, 64) |
Case 2 | 2 | Free to move | |
Case 3 | 4 | Free to move |
Hole No. | Side Length Before Optimization | Side Length After Optimization |
---|---|---|
1st hole |
Hole No. | Position Before Optimization | Position After Optimization |
---|---|---|
1st hole | (64, 64) | (54, 54) |
2nd hole | (64, 64) | (54, 74) |
Hole No. | Position Before Optimization | Position After Optimization |
---|---|---|
1th hole | (64, 64) | (49, 49) |
2th hole | (64, 64) | (49, 64) |
3th hole | (64, 64) | (49, 79) |
4th hole | (64, 64) | (69, 79) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Elhanashi, A.; Ma, H.; Chiarelli, M.R. Heat Conduction Plate Layout Optimization Using Physics-Driven Convolutional Neural Networks. Appl. Sci. 2022, 12, 10986. https://doi.org/10.3390/app122110986
Sun Y, Elhanashi A, Ma H, Chiarelli MR. Heat Conduction Plate Layout Optimization Using Physics-Driven Convolutional Neural Networks. Applied Sciences. 2022; 12(21):10986. https://doi.org/10.3390/app122110986
Chicago/Turabian StyleSun, Yang, Abdussalam Elhanashi, Hao Ma, and Mario Rosario Chiarelli. 2022. "Heat Conduction Plate Layout Optimization Using Physics-Driven Convolutional Neural Networks" Applied Sciences 12, no. 21: 10986. https://doi.org/10.3390/app122110986
APA StyleSun, Y., Elhanashi, A., Ma, H., & Chiarelli, M. R. (2022). Heat Conduction Plate Layout Optimization Using Physics-Driven Convolutional Neural Networks. Applied Sciences, 12(21), 10986. https://doi.org/10.3390/app122110986