Differentially Private XGBoost Algorithm for Traceability of Rice Varieties
Abstract
:1. Introduction
2. Related Work
2.1. Agricultural Traceability
2.2. Encrpytion Tachniques
2.3. Blockchain Technology
2.4. Differential Privacy
2.5. XGBoost
3. Methodology
3.1. Differential Privacy
3.2. XGBoost Algorithm
3.3. Differentially Private XGBoost
3.4. Privacy Computing
Algorithm 1 Differentially Privated XGBoost Algorithm |
Input: The set of instances for current node I; The customized scale of Gaussian noise , ;Output:
|
4. Experiments
4.1. Data Collection and Preprocessing
4.2. Analysis of Near-Infrared Spectrogram of Rice
4.3. Evaluation on Privacy
4.4. Evaluation on Utility
4.5. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FT-NIR | Fourier transform near infrared |
DP | Differential Privacy |
References
- Uawisetwathan, U.; Karoonuthaisiri, N. Metabolomics for rice quality and traceability: Feasibility and future aspects. Curr. Opin. Food Sci. 2019, 28, 58–66. [Google Scholar] [CrossRef]
- Bai, Y.; Tan, L.Q.; Zhao, S. Research Progress on origin tracing and authenticity of rice. J. Anhui Agric. Sci. 2021, 49, 22–29. [Google Scholar]
- Hwang, J.Y.; Kang, S.; Lee, K.; Chung, H. Enhance raman spectroscopic discrimination of the geographical origins of rice samples via transmission spectral collection through packed grains. Talanta 2012, 101, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakashita, R.; Huque, R.; Khatun, M.A.; Othman, Z.B.; Salim, N.A.B.A.; Thantar, S.; Pabroa, P.C.; Kong, P.Y.K.; Waduge, V.A.; et al. Effects of processing on stable isotope compositions (δ13C, δ15N, and δ18O) of rice (Oryza sativa) and stable isotope analysis of asian rice samples for tracing their geographical origins. Jpn. Agric. Res. Q. JARQ. 2022, 56, 95–103. [Google Scholar] [CrossRef]
- Qiu, Y.C.; Zhao, Y.C.; Chen, H.; Peng, J.N.; Qian, L.L. Study on origin of volatile components of rice. Farm Prod. Process. 2018, 1, 40–43. [Google Scholar]
- Cui, C.; Wang, Z.H. Study on rice origin discrimination in Jilin province based on combined analysis of mineral elements and isotopes. Cereals Oils 2022, 6, 36–40+44. [Google Scholar]
- Feng, Y.; Fu, T.X.; Zhang, L.Y.; Wang, C.Y.; Zhang, D.J. Research on differential metabolites in distinction of rice (Oryza sativa L.) origin based on GC-MS. J. Chem. 2019, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, J.H.; Xu, L.; Wang, S.X.; Zhou, M.H.; Yin, J.W.; Lu, A.X. Rapid screening of cadmium in rice and identification of geographical origins by spectral method. Int. J. Environ. Res. Public Health 2021, 49, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Liu, C.L.; Sun, X.R.; Yang, Y.F.; Lin, L. Study on fast identification method of rice origin traceability based on fourier transform infrared spectroscopy technology. Food Sci. Technol. 2021, 46, 244–249. [Google Scholar] [CrossRef]
- Yakubu, B.M.; Latif, R.; Yakubu, A.; Khan, M.I.; Magashi, A.I. RiceChain: Secure and traceable rice supply chain framework using blockchain technology. PeerJ Computer. Sci. 2022, 8, e801. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.S.; Ding, Y.F.; Pan, J.R.; Zhu, C. Discrimination of transgenic rice based on near infrared reflectance spectroscopy and partial least squares regression discriminant analysis. Rice Sci. 2015, 22, 245–249. [Google Scholar]
- Xu, W.Y.; Tang, X.L.; Li, K.L.; Tang, W.J. Research on geographical quality of Se-rich rice based on cluster analysis. J. Instrum. 2022, 17, 22–29. [Google Scholar]
- Yan, C.H.; Lu, A. A deep learning method combined with electronic nose to identify the rice origin. J. Instrum. 2022, 17, 8–16. [Google Scholar] [CrossRef]
- Son, S.; Kim, D.; Choul, C.M.; Lee, J.; Kim, B.; Min, C.C.; Kim, S. Weight interpretation of artificial neural network model for analysis of rice (Oryza sativa L.) with near-infrared spectroscopy. Food Chem. X 2022, 49, 22–29. [Google Scholar]
- Qu, M.Z. Design and analysis of agricultural information transmission based on mixed chaotic encryption. J. Northeast. Agric. Univ. 2012, 43, 92–95. [Google Scholar]
- Huning, L.; Bauer, J.; Aschenbruck, N. A Privacy Preserving Mobile Crowdsensing Architecture for a Smart Farming Application. In Proceedings of the First ACM Workshop on Mobile Crowdsensing Systems and Applications (CrowdSenSys’17), New York, NY, USA, 5 November 2017; pp. 62–67. [Google Scholar]
- Hang, L.; Ullah, I.; Kim, D. A secure fish farm platform based on blockchain for agriculture data integrity. Comput. Electron. Agric. 2020, 170, 105251. [Google Scholar] [CrossRef]
- Cynthia, D. Differential privacy. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, Venice, Italy, 10–14 July 2006; pp. 1–12. [Google Scholar]
- Chukkapalli, S.; Ranade, P.; Mittal, S.; Joshi, A. A Privacy Preserving Anomaly Detection Framework for Cooperative Smart Farming Ecosystem. In Proceedings of the 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 13–15 December 2021; pp. 340–347. [Google Scholar]
- Wang, Y.N. Research on the Application of Computer Technology in Food Safety Traceability System. J. Phys. Conf. Ser. 2021, 1992, 032102. [Google Scholar] [CrossRef]
- Masudin, I.; Ramadhani, A.; Palupi, D. Traceability system model of Indonesian food cold-chain industry: A Covid-19 pandemic perspective. Clean. Eng. Technol. 2021, 4, 100238. [Google Scholar] [CrossRef]
- Rao, E.S.; Shuklab, S.R. Food traceability system in India. Meas. Food 2022, 5, 100019. [Google Scholar] [CrossRef]
- Fan, M.S. Reserch And Implementation Of Privacy Protection Agricultural Product Traceability System Based On Blockchain. Master’s Thesis, Harbin Institute of Technology, Shenzhen, China, 2021. [Google Scholar]
- Majid, M.; Luo, P. Forty years of attacks on the RSA cryptosystem: A brief survey. J. Discret. Math. Sci. Cryptogr. 2019, 22, 9–29. [Google Scholar]
- Zhao, H.T.; Shen, J.G.; Chen, H.J. RBAC model in the application of food safety traceability platform. Electron. Des. Eng. 2017, 25, 49–52. [Google Scholar]
- Waheed, N.; He, X.J.; Ikram, M.; Usman, M.; Hashmi, S.S.; Usman, M. Security and Privacy in IoT Using Machine Learning and Blockchain: Threats and Countermeasures. ACM Comput. Surv. 2020, 53, 1–37. [Google Scholar] [CrossRef]
- Feng, H.H.; Wang, X.; Duan, Y.Q.; Zhang, J.; Zhang, X.S. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. J. Clean. Prod. 2020, 260, 121031. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 2020, 52, 101967. [Google Scholar] [CrossRef]
- Behnke, K.; Janssen, M. Boundary conditions for traceability in food supply chains using blockchain technology. Int. J. Inf. Manag. 2020, 52, 101969. [Google Scholar] [CrossRef]
- Ho, G.T.; Tang, Y.M.; Tsang, K.Y.; Tang, V.; Chau, K.Y. A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Syst. Appl. 2021, 179, 115101. [Google Scholar] [CrossRef]
- Maruseac, M.; Ghinita, G.; Rughinis, R. Privacy-preserving publication of provenance workflows. In Proceedings of the 4th ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, 3 March 2014; pp. 159–162. [Google Scholar]
- Liu, F.; Yang, C.; Zhou, A. Graph Hilbert Neural Network. Chin. J. Electron. 2022, 32, 140–150. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wang, S.; Chang, J.M. Privacy-preserving boosting in the local setting. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4451–4465. [Google Scholar] [CrossRef]
- Patil, A.; Singh, S. Differential private random forest. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 2623–2630. [Google Scholar]
- Neunhoeffer, M.; Wu, Z.W.S.; Dwork, C. Private post-GAN boosting. arXiv 2020, arXiv:2007.11934. [Google Scholar]
- Dwork, C.; Lei, J. Differential privacy and robust statistics. In Proceedings of the STOC ’09: Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 371–380. [Google Scholar]
- Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- McSherry, F.D. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, Providence, RI, USA, 29 June–2 July 2009; pp. 19–30. [Google Scholar]
- Dwork, C.; Rothblum, G.N.; Vadhan, S.P. Boosting and differential privacy. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 23–26 October 2010; pp. 51–60. [Google Scholar]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep Learning with Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 308–318. [Google Scholar]
Variety | Origin | Amount | Number |
---|---|---|---|
Longyang 16 | Wuchang, Heilongjiang, China | 50kg | LY16 |
Longdao 18 | Harbin, Heilongjiang, China | 50kg | LD18 |
Longqingdao 21 | Daqing, Heilongjiang, China | 50kg | LQ21 |
Qijing 11 | Daqing, Heilongjiang, China | 50kg | QJ11 |
Type | Scale | RF+GM | AdaBoost+GM | DP-XGB |
---|---|---|---|---|
3-class | 96.8% | 100.0% | 100.0% | |
93.5% | 91.9% | 96.8% | ||
4-class | 81.7% | 80.5% | 82.9% | |
69.5% | 73.2% | 76.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Yang, W.; Yang, C. Differentially Private XGBoost Algorithm for Traceability of Rice Varieties. Appl. Sci. 2022, 12, 11037. https://doi.org/10.3390/app122111037
Yu R, Yang W, Yang C. Differentially Private XGBoost Algorithm for Traceability of Rice Varieties. Applied Sciences. 2022; 12(21):11037. https://doi.org/10.3390/app122111037
Chicago/Turabian StyleYu, Runzhong, Wu Yang, and Chengyi Yang. 2022. "Differentially Private XGBoost Algorithm for Traceability of Rice Varieties" Applied Sciences 12, no. 21: 11037. https://doi.org/10.3390/app122111037
APA StyleYu, R., Yang, W., & Yang, C. (2022). Differentially Private XGBoost Algorithm for Traceability of Rice Varieties. Applied Sciences, 12(21), 11037. https://doi.org/10.3390/app122111037