Thermo-Hydrodynamic Analysis of Low-Temperature Supercritical Helium Spiral-Grooved Face Seals: Large Ambient Temperature Gradient
Abstract
:1. Introduction
2. Theoretical Model
2.1. Geometrical Model
2.2. Governing Equations
2.3. Theoretical Calculations
3. Results and Discussion
3.1. Thermal Deformation Characteristics
3.2. Thermo-Hydrodynamic Characteristics
3.3. Sealing Performance
4. Conclusions
- (1)
- Large ambient-temperature gradients significantly affected the thermo-hydrodynamic characteristics of the supercritical helium face seal. Although the ambient temperature gradient tended to increase the temperature rise of the gas film, it contributed to decreasing the extent of the film-thickness deformation of the gas film.
- (2)
- The large ambient temperature gradient contributed to improving the sealing performance of the supercritical helium face seal. The ambient-temperature gradient increased, resulting in a larger opening force and lower leakage of the face seal, illustrating the broad application prospects of gas face seals in precooled aeroengine systems.
Author Contributions
Funding
Conflicts of Interest
References
- Wei, X.; Jin, F.; Ji, H.; Jin, Y. Thermodynamic analysis of key parameters on the performance of air breathing pre-cooled engine. Appl. Therm. Eng. 2022, 201, 117733. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, Z.; Liu, H.; Li, H.; Li, H.; Zhao, R. Verification at Mach 4 heat conditions of an annular microtube-typed precooler for hypersonic precooled engines. Appl. Therm. Eng. 2022, 201, 117742. [Google Scholar] [CrossRef]
- Hong, W.; Baoshan, Z.; Jianshu, L.; Changliu, Y. A thermohydrodynamic analysis of dry gas seals for high-temperature gas-cooled reactor. J. Tribol. 2013, 135, 021701. [Google Scholar] [CrossRef]
- Fairuz, Z.M.; Jahn, I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals. Tribol. Int. 2016, 102, 333–347. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Zhang, L.; Zhang, D.; Xie, Y. Numerical investigation on flow characteristics and aerodynamic performance of shroud seal in a supercritical CO2 axial-flow turbine. Appl. Therm. Eng. 2020, 169, 114960. [Google Scholar] [CrossRef]
- Yuan, T.; Li, Z.; Li, J.; Yuan, Q. Design and Analysis of Cooling Structure for Dry Gas Seal Chamber of Supercritical Carbon Dioxide Turbine Shaft End. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, June 2021; p. V010T30A012. Volume 85048. [Google Scholar]
- Lee, H.; Ma, S.; Chen, Y.; Zou, Z.; Liu, H. Experimental study on compact heat exchanger for hypersonic aero-engine. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017; p. 2333. [Google Scholar]
- Zhang, J.; Wang, Z.; Li, Q. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode. Acta Astronaut. 2017, 138, 394–406. [Google Scholar] [CrossRef]
- Yu, X.; Wang, C.; Yu, D. Thermodynamic design and optimization of the multi-branch closed Brayton cycle based precooling-compression system for a novel hypersonic aeroengine. Energ. Convers. Manag. 2020, 205, 112412. [Google Scholar] [CrossRef]
- Xie, J.; Ma, C.; Bai, S. Thermo-distortion characteristics of spiral groove gas face seal at high temperature. Numer. Heat Transf. B Fundam. 2020, 77, 242–256. [Google Scholar] [CrossRef]
- Ding, X.; Lu, J. Theoretical analysis and experiment on gas film temperature in a spiral groove dry gas seal under high speed and pressure. Int. J. Heat Mass Transf. 2016, 96, 438–450. [Google Scholar] [CrossRef]
- Luo, J.; Dohmen, H.J.; Benra, F.K. Coupled thermal-structural-fluid numerical analysis of gas lubricated mechanical seals. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, June 2018; p. V07BT34A014. Volume 51142. [Google Scholar]
- Fairuz, Z.M.; Jahn, I.; Abdul-Rahman, R. The effect of convection area on the deformation of dry gas seal operating with supercritical CO2. Tribol. Int. 2019, 137, 349–365. [Google Scholar] [CrossRef]
- Chávez, A.; De Santiago, O. Predictions of the thermo elastic deformation of dry gas seal rings in the hydrodynamic lubrication regime. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 1388–1408. [Google Scholar] [CrossRef]
- Thomas, S.; Brunetière, N.; Tournerie, B. Numerical modelling of high pressure gas face seals. J. Tribol. 2006, 128, 396–405. [Google Scholar] [CrossRef]
- Thomas, S.; Brunetière, N.; Tournerie, B. Thermoelastohydrodynamic behavior of mechanical gas face seals operating at high pressure. J. Tribol. 2007, 129, 841–850. [Google Scholar] [CrossRef]
- Blasiak, S. An analytical approach to heat transfer and thermal distortions in non-contacting face seals. Int. J. Heat Mass Transf. 2015, 81, 90–102. [Google Scholar] [CrossRef]
- Su, H.; Rahmani, R.; Rahnejat, H. Thermohydrodynamics of bidirectional groove dry gas seals with slip flow. Int. J. Therm. Sci. 2016, 110, 270–284. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, G.; Chiappa, P.; Shelton, J.; Higgs III, C.F. A thermo-elasto-hydrodynamic lubrication modeling approach to the operation of reactor coolant pump seals. Tribol. Int. 2019, 138, 487–498. [Google Scholar] [CrossRef]
- Vinogradov, A.; Novikova, J.; Shipunov, V. The influence of nonuniform heat transfer coefficient distribution on the value of thermal deformations in mechanical gas dynamic seal rings. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, May 2021; Volume 1891, p. 012041. [Google Scholar]
- Błasiak, S.; Kundera, C. A numerical analysis of the grooved surface effects on the thermal behavior of a non-contacting face seal. Procedia Eng. 2012, 39, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Bai, S. Thermoelastohydrodynamic behaviour of inclined-ellipse dimpled gas face seals. Sci. China Technol. Sci. 2017, 60, 529–537. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, D. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove. J. Therm. Sci. 2019, 28, 547–558. [Google Scholar] [CrossRef]
- Takami, M.R.; Gerdroodbary, M.B.; Ganji, D.D. Thermal analysis of mechanical face seal using analytical approach. Therm. Sci. Eng. Prog. 2018, 5, 60–68. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, S. Thermoelastohydrodynamic characteristics of supercritical CO2 spiral groove face seals. Ind. Lubr. Tribol. 2020, 73, 153–162. [Google Scholar] [CrossRef]
- Xie, F.; Li, Y.; Ma, Y.; Xia, S.; Ren, J. Cooling behaviors of a novel flow channel in mechanical seals of extreme high-speed rotation for cryogenic rockets. Cryogenics 2020, 107, 103055. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, S. Ultra-high-speed TEHL characteristics of T-groove face seal under supercritical CO2 condition. Ind. Lubr. Tribol. 2021, 73, 523–530. [Google Scholar] [CrossRef]
- Hassini, M.A.; Arghir, M. Phase change and choked flow effects on rotordynamic coefficients of cryogenic annular seals. J. Tribol. 2013, 135, 042201. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, G.; Zhao, W.; Yan, X.; Zhang, Y. An experimental test on a cryogenic high-speed hydrodynamic non-contact mechanical seal. Tribol. Lett. 2017, 65, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhao, Y.; Zhao, W.; Yan, X.; Liang, M. An experimental study on the cryogenic face seal at different inlet pressures. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234, 1470–1481. [Google Scholar] [CrossRef]
- Jian, D.; Qiuru, Z. Key technologies for thermodynamic cycle of precooled engines: A review. Acta Astronaut. 2020, 177, 299–312. [Google Scholar] [CrossRef]
- Ding, W.; Eri, Q.; Kong, B.; Zhang, Z. Numerical investigation of a compact tube heat exchanger for hypersonic pre-cooled aero-engine. Appl. Therm. Eng. 2020, 170, 114977. [Google Scholar] [CrossRef]
- Arp, V.D.; McCarty, R.D. Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa; MST Technical Note 1334 (revised); National Institute of Standards and Technology: Boulder, CO, USA, 1998.
- Angus, S.; De Reuck, K.M.; McCarty, R.D. International Thermodynamic Tables of the Fluid State Helium-4; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Zhu, D.; Yang, J.; Bai, S. Thermoelastohydrodynamic Characteristics of Low-Temperature Helium Gas T-Groove Face Seals. Materials 2021, 14, 2873. [Google Scholar] [CrossRef]
- Rouillon, M.; Brunetière, N. Spiral groove face seal behavior and performance in liquid lubricated applications. Tribol. Trans. 2018, 61, 1048–1056. [Google Scholar] [CrossRef]
- Li, S.X.; Chen, L.; Li, H.; Li, S.C.; Li, Q.Z. Analysis on End-face Temperature of High-speed Oil-Gas Two-Phase Backflow Pumping Seal. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, July 2019; Volume 544, p. 012034. [Google Scholar]
- Chávez, A.; De Santiago, O. Experimental measurements of the thermo elastic behavior of a dry gas seal operating with logarithmic spiral grooves of 11° and 15°. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1807–1819. [Google Scholar] [CrossRef]
- Lebeck, A.O. Principles and Design of Mechanical Face Seals; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Müller, H.K.; Nau, B.S. Fluid Sealing Technology: Principles and Applications; Routledge: London, UK, 2019. [Google Scholar]
- Bai, S. Thermoelastohydrodynamic gas lubrication of spiral-groove face seals: Modeling and analysis of vapor condensation. Tribol. Trans. 2017, 60, 719–728. [Google Scholar] [CrossRef]
- Blasiak, S. Influence of thermoelastic phenomena on the energy conservation in non-contacting face seals. Energies 2020, 13, 5283. [Google Scholar] [CrossRef]
- Bai, S.; Wen, S. Gas Thermohydrodynamic Lubrication and Seals; Academic Press: New York, NY, USA, 2019. [Google Scholar]
- Tkaczuk, J.; Lemmon, E.; Bell, I.; Luchier, N.; Millet, F. Equations of state for the thermodynamic properties of cryogenic mixtures for helium-4, neon, and argon. J. Phys. Chem. Ref. Data 2020, 49, 023101. [Google Scholar] [CrossRef]
Parameters | Units | Values |
---|---|---|
Outlet radius/ri | mm | 44 |
Inlet radius/ro | mm | 50 |
Spiral radius/rg | mm | 48 |
Spiral angle/β | - | 16 |
Groove depth/hd | μm | 5 |
Groove numbers/N | - | 12 |
Thickness of seal rings/h1, h2 | mm | 15 |
Thickness of gas film/h | μm | - |
Item | Graphite | Stainless Steel |
---|---|---|
Material density/kg·m−3 | 1800 | 7930 |
Young’s modulus/GPa | 300 | 400 |
Poisson’s ratio | 0.17 | 0.17 |
Specific heat capacity/J·kg−1·K−1 | 710 | 500 |
Thermal conductivity/W·m−1·K−1 | 129 | 16.2 |
Linear thermal expansion coefficient/10−6 K | 2.75 | 5.5 |
Item | Symbol | Specification |
---|---|---|
Convection heat transfer coefficient of solid rings at ambient condition/W·m−2·K−1 | k1, k2 | 8.0 |
Thermal conductivity of helium/W·m−1·K−1 | kc | 0.024 |
Degrees of freedom of motion of gas molecules | id | 3 |
Sealing temperature/K | T0 | 100~350 |
Sealing pressure/MPa | p0 | 0.1~5.0 |
Basic film thickness/μm | h0 | 1.0~5.0 |
Rotational speed/rpm | n | 3000~50,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Bai, S. Thermo-Hydrodynamic Analysis of Low-Temperature Supercritical Helium Spiral-Grooved Face Seals: Large Ambient Temperature Gradient. Appl. Sci. 2022, 12, 11074. https://doi.org/10.3390/app122111074
Wang R, Bai S. Thermo-Hydrodynamic Analysis of Low-Temperature Supercritical Helium Spiral-Grooved Face Seals: Large Ambient Temperature Gradient. Applied Sciences. 2022; 12(21):11074. https://doi.org/10.3390/app122111074
Chicago/Turabian StyleWang, Rong, and Shaoxian Bai. 2022. "Thermo-Hydrodynamic Analysis of Low-Temperature Supercritical Helium Spiral-Grooved Face Seals: Large Ambient Temperature Gradient" Applied Sciences 12, no. 21: 11074. https://doi.org/10.3390/app122111074
APA StyleWang, R., & Bai, S. (2022). Thermo-Hydrodynamic Analysis of Low-Temperature Supercritical Helium Spiral-Grooved Face Seals: Large Ambient Temperature Gradient. Applied Sciences, 12(21), 11074. https://doi.org/10.3390/app122111074