Limonin Derivatives via Hydrogenation: Structural Identification and Anti-Inflammatory Activity Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrogenation of Limonin
2.2.1. Hydrogenation of Limonin Using Sodium Cyanoborohydride
2.2.2. Hydrogenation of Limonin Using Lithium Aluminum Hydride
2.2.3. Hydrogenation of Limonin Using Sodium Borohydride
2.3. Evaluation of Anti-Inflammatory Activity
2.4. Cytotoxicity Evaluation
3. Results and Discussion
3.1. Hydrogenation of Limonin
3.2. Evaluation of Anti-Inflammatory Activity of Limonoids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yong, W.T. Advances in pharmacological activities of limonoid monomers. Chin. Med. Mater. 2017, 40, 242–246. [Google Scholar]
- Jiang, J.P. A review: Research progress of limonoids. China Brew. 2012, 31, 10–14. [Google Scholar]
- Ruberto, G.; Renda, A.; Tringali, C.; Napoli, E.M.; Simmonds, M.S.J. Citrus limonoids and their semisynthetic derivatives as antifeedant agents against Spodoptera frugiperda larvae. a structure-activity relationship study. J. Agric. Food Chem. 2002, 50, 6766–6774. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Zhu, Q.; Gong, G.; Luo, D.; Jiang, A.; Yang, L.; Xu, Y. Synthesis and pharmacological evaluation of novel limonin derivatives as anti-inflammatory and analgesic agents with high water solubility. Bioorg. Med. Chem. Lett. 2014, 24, 1851–1855. [Google Scholar] [CrossRef]
- Fan, S.M.; Zhang, C.L.; Luo, T. Limonin: A review of its pharmacology, toxicity, and pharmacokinetics. Molecules 2019, 24, 3679. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Fan, Y.-Y.; Smith, R.; Patil, B.; Jayaprakasha, G.K.; McMurray, D.N.; Chapkin, R.S. Dietary curcumin and limonin suppress CD4+T-cell proliferation and interleukin-2 production in mice. J. Nutr. 2009, 139, 1042–1048. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jayaprakasha, G.K.; Muthuchamy, M.; Patil, B.S. Structure–function relationships of citrus limonoids on p38 MAP kinase activity in human aortic smooth muscle cells. Eur. J. Pharmacol. 2011, 670, 44–49. [Google Scholar] [CrossRef]
- Hassan, N.A.; Bassossy, H.M.E.; Fahmy, A.; Mahmoud, M.F. Limonin alleviates macro- and micro-vascular complications of metabolic syndrome in rats: A comparative study with azelnidipine. Phytomedicine 2018, 43, 92–102. [Google Scholar] [CrossRef]
- Fujii, A.; Okuyama, T.; Wakame, K. Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J. Nat. Med. 2017, 71, 745–756. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lu, Y.; Zhou, Y.F.; Wang, Y.; Guo, S.H.; Zhang, Q.; Sun, Y. Therapeutic effect and mechanism of limonin on dextran sulfate sodium salt-induced ulcerative colitis in mice. Chin. J. Biopr. Eng. 2018, 16, 57–62. [Google Scholar]
- Wang, D.; Zhang, H.H.; Fang, J.; Zhong, Y.; Yu, C. Effects of limoninon on LPS-induced acute lung injury in mice. Chin. J. Clinc. Pharmacol. Therapeut. 2018, 23, 8–12. [Google Scholar]
- Liu, M.H.; Zhou, X.D. Limonin inhibits the PM2.5 inhalation-induced airway inflammation and mucus hypersecretion in rats. Basic Med. Sci. Clin. 2018, 38, 433–438. [Google Scholar]
- Wang, X.; Zhou, Y.; He, S.; Ouyang, Z.; Feng, L.; Shen, Y.; Wu, X.; Sun, Y.; Wu, X.; Xu, Q. Obaculactone exerts a novel ameliorating effect on contact dermatitis through regulating T lymphocyte. Int. Immunopharmacol. 2015, 28, 1–9. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, H.; Sun, H.; Zhang, Y.; An, N.; Yan, G.; Meng, X.; Wang, X. Metabolomics strategy reveals therapeutical assessment of limonin on nonbacterial prostatitis. Food Funct. 2015, 6, 3540–3549. [Google Scholar] [CrossRef]
- Langeswaran, K.; Revathy, R.; Vijayaprakash, S.; Balasubramanian, M.; Gowthamkumar, S. Influence of limonin on Wnt signalling molecule in HepG2 cell lines. J. Nat. Sci. Biol. Med. 2013, 4, 126–133. [Google Scholar] [CrossRef]
- Langeswaran, K.; Jagadeesan, A.J.; Revathy, R.; Balasubramanian, M.P. Chemotherapeutic efficacy of limonin against Aflatoxin B1 induced primary hepatocarcinogenesis in Wistar albino rats. Biomed. Aging Pathol. 2012, 2, 206–211. [Google Scholar] [CrossRef]
- Xu, R.; Ma, L.; Chen, T.; Wang, J. Sophorolipid Suppresses LPS-Induced Inflammation in RAW264. 7 Cells through the NF-κB Signaling Pathway. Molecules 2022, 27, 5037. [Google Scholar] [CrossRef]
- Zhou, Z.; Kurtán, T.; Mándi, A.; Gu, Y.; Yao, L.; Xin, G.; Li, X.; Guo, Y. Novel and neuroprotective tetranortriterpenoids from Chinese mangrove Xylocarpus granatum Koenig. Sci. Rep. 2016, 6, 33908. [Google Scholar] [CrossRef]
- Chen, Y.; Ruan, J.; Sun, F.; Wang, H.; Yang, S.; Zhang, Y.; Yan, J.; Yu, H.; Guo, Y.; Zhang, Y.; et al. Anti-inflammatory limonoids from Cortex Dictamni. Front. Chem. 2020, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Wang, X.; Yang, M.; Luo, J.; Kong, L. Bioactive A-ring rearranged limonoids from the root barks of Walsura robusta. Acta Pharm. Sin. B 2019, 9, 545–556. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, S.; Zhang, J.; Chen, X.; Mickymaray, S. Limonin: A triterpenoid exerts protective effect during lipopolysaccharide stimulated inflammation in BV2 microglial cells. Pharmacogn. Mag. 2020, 16, 859. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Lv, X.; Lu, J.; Ren, C.; Zeng, Z.; Zheng, L.; Zhou, X.; Fu, H.; Zhou, D.; et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int. Immunopharmacol. 2019, 75, 105768. [Google Scholar] [CrossRef]
Compound (#) | Concentration μM | Mean Release of TNF-α by RAW264.7 Cells (pg/mL) | SD Value | Inhibition Ratio of TNF-α Release (%) |
---|---|---|---|---|
Cell Control | 70.5 | 9.0 | ||
Stimulation Control | 3602.5 | 461.1 | ||
2 | 20 | 2592.3 | 140.1 | 28.6 * |
3 | 20 | 2266.4 | 172.6 | 37.8 *** |
4 | 20 | 2506.6 | 59.8 | 31.0 *** |
5 | 20 | 2504.3 | 152.2 | 30.5 ** |
6 | 20 | 2501.6 | 155.0 | 31.2 ** |
7 | 20 | 2398.1 | 161.0 | 33.4 ** |
8 | 20 | 2432.7 | 147.2 | 32.5 * |
9 | 20 | 1956.1 | 174.6 | 55.3 *** |
10 | 20 | 3379.4 | 173.8 | 18.0 |
11 | 20 | 4395.4 | 290.9 | −8.6 |
12 | 20 | 4179.9 | 478.5 | −3.0 |
13 | 20 | 636.3 | 127.1 | 90.0 *** |
14 | 20 | 3416.5 | 834.2 | 17.0 |
15 | 20 | 4686.7 | 489.3 | −16.3 |
16 | 20 | 2770.8 | 287.4 | 34.0 ** |
Groups | NO Production ± SEM (% of LPS Group) | |||
---|---|---|---|---|
Control | 3.35% ± 1.54 | |||
Model-LPS (100 ng/mL) | 100.0% ± 0.00 | |||
Positive control-Resveratrol (20 μM) | 70.64% ± 0.98 *** | |||
Compounds | 1 μM | Inhibition Ratio of NO | 10 μM | Inhibition Ratio of NO |
2 | 97.94% ± 6.92 | 2.06% | 87.40% ± 9.08 | 12.60% * |
3 | 89.73% ± 4.66 | 10.27% | 88.44% ± 2.32 * | 11.56% ** |
4 | 105.3% ± 5.69 | −5.30% | 86.57% ± 6.21 | 13.43% * |
5 | 108.6% ± 6.83 | −8.60% | 100.7% ± 2.37 | −0.70% |
6 | 101.2% ± 5.42 | −1.20% | 88.43% ± 3.31 | 11.57% ** |
7 | 93.23% ± 6.16 | 6.77% | 100.6% ± 9.64 | −0.60% |
8 | 98.66% ± 8.01 | 1.34% | 83.84% ± 2.12 | 16.16% |
9 | 87.35% ± 7.08 | 12.65% | 63.48% ± 7.67 | 36.52% *** |
10 | 103.3% ± 8.02 | −3.30% | 54.37% ± 7.30 | 45.63% ** |
11 | 90.78% ± 4.67 | 9.22% | 83.33% ± 2.68 | 16.67% ** |
12 | 96.51% ± 5.01 | 3.49% | 85.10% ± 3.98 | 14.90% ** |
13 | 91.37% ± 3.43 | 8.63% | 36.23% ± 2.93 | 63.77% *** |
14 | 95.47% ± 8.39 | 4.53% | 64.16% ± 1.56 | 35.84% *** |
15 | 88.40% ± 4.38 | 11.60% | 81.61% ± 2.55 | 18.39% ** |
16 | 89.86% ± 3.79 | 10.14% | 67.60% ± 2.33 | 32.40% *** |
Groups | Cell Viability ± SEM (% of the Control Group) | |
---|---|---|
Control | 100.0% ± 0.00 | |
Positive control-Resveratrol (20 μM) | 57.72% ± 3.21 | |
Compounds | 1 μM | 10 μM |
2 | 99.64% ± 4.13 | 95.65% ± 3.70 |
3 | 93.14% ± 3.77 | 95.11% ± 3.80 |
4 | 94.96% ± 2.83 | 92.97% ± 1.97 |
5 | 104.0% ± 4.67 | 101.2% ± 1.69 |
6 | 101.4% ± 5.23 | 91.67% ± 0.69 |
7 | 96.55% ± 3.49 | 90.20% ± 3.85 |
8 | 98.56% ± 2.51 | 91.97% ± 1.14 |
9 | 100.4% ± 3.99 | 92.44% ± 3.12 |
10 | 102.4% ± 1.65 | 92.73% ± 2.92 |
11 | 101.5% ± 2.37 | 88.10% ± 3.68 |
12 | 99.00% ± 1.88 | 91.42% ± 1.46 |
13 | 101.5% ± 0.90 | 90.74% ± 2.47 |
14 | 99.45% ± 2.69 | 96.86% ± 4.92 |
15 | 96.98% ± 4.55 | 97.10% ± 1.06 |
16 | 97.80% ± 4.53 | 97.63% ± 2.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Hu, Y.; Chang, K. Limonin Derivatives via Hydrogenation: Structural Identification and Anti-Inflammatory Activity Evaluation. Appl. Sci. 2022, 12, 11169. https://doi.org/10.3390/app122111169
Yang J, Hu Y, Chang K. Limonin Derivatives via Hydrogenation: Structural Identification and Anti-Inflammatory Activity Evaluation. Applied Sciences. 2022; 12(21):11169. https://doi.org/10.3390/app122111169
Chicago/Turabian StyleYang, Jingguo, Yuhong Hu, and Kuan Chang. 2022. "Limonin Derivatives via Hydrogenation: Structural Identification and Anti-Inflammatory Activity Evaluation" Applied Sciences 12, no. 21: 11169. https://doi.org/10.3390/app122111169
APA StyleYang, J., Hu, Y., & Chang, K. (2022). Limonin Derivatives via Hydrogenation: Structural Identification and Anti-Inflammatory Activity Evaluation. Applied Sciences, 12(21), 11169. https://doi.org/10.3390/app122111169