Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake
Abstract
:1. Introduction
2. Data and Methods Used
2.1. Geographic, Demographic and Territorial Features of the Study Area
2.2. Geological Setting and Seismotectonic Aspect
2.3. Historical and Recent Seismicity
2.4. Geotechnical and Geophysical Data in the Durres Region
2.5. Ambient Noise Data
2.6. Methods Used
- (a)
- Data Processing and Analyses of Single Station HVSR
- (b)
- Theoretical 1D simulation of ambient noise
3. Results
3.1. Experimental HVSR Results
3.2. Clustering of the HVSRs and Their Spatial Distribution in Durres
3.3. Synthetics HVSR in Selected Sites
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bard, P.-Y. Microtremor Measurements: A tool for site effect estimation? In Proceedings of the the Effects of Surface Geology on Seismic Motion; Irikura, K., Kudo, K., Okada, H., Sasatani, T., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 1251–1279. [Google Scholar]
- Bard, P.-Y.H.; Cadet, B.; Endrun, M.; Hobiger, F.; Renalier, N.; Theodoulidis, M.; Ohrnberger, D.; Fäh, F.; Sabetta, P.; Teves-Costa, A.-M.; et al. From Non-invasive Site Characterization to Site Amplification: Recent Advances in the Use of Ambient Vibration Measurements. In Earthquake Engineering in Europe; Garevski, M., Ansal, A., Eds.; Springer Science & Business Media: New York, NY, USA, 2010; Chapter 6; pp. 105–123. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Effects of Local Geology on Ground Motion near San Francisco Bay. Bull. Seismol. Soc. Am. 1970, 60, 29–61. [Google Scholar]
- Arai, H.; Tokimatsu, K. S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull. Seismol. Soc. Am. 2005, 95, 1766–1778. [Google Scholar] [CrossRef] [Green Version]
- Bonnefoy-Claudet, S.; Cotton, F.; Bard, P.-Y. The nature of noise wavefield and its applications for site effects studies: A literature review. Earth Sci. Rev. 2006, 79, 205–227. [Google Scholar] [CrossRef]
- Nogoshi, M.; Igarashi, T. On the Amplitude Characteristics of Microtremor (Part 2). J. Seismol. Soc. Jpn. 1971, 24, 26–40. (In Japanese) [Google Scholar]
- Kanai, K.; Tanaka, T. On Microtremor VIII. Bull. Earthq. Res. Inst. 1961, 39, 97–114. [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR Railway Tech. Res. Inst. 1989, 30, 25–33. [Google Scholar]
- Nakamura, Y. Clear identification of fundamental idea of Nakamura’s technique and its applications. In Proceedings of the 12th WCEE, Auckland, New Zealand, 30 January–4 February 2000; p. 2656. [Google Scholar]
- SESAME Project Guidelines. 2004. Available online: http://sesame.geopsy.org/SES_Reports.htm (accessed on 1 November 2022).
- Bard, P.-Y.; the SESAME Participants. The SESAME project: An overview and main results. In Proceedings of the 13th WCEE, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Molnar, S.; Cassidy, J.F. A comparison of site response techniques using weak-motion earthquakes and microtremors. Earthq. Spectra. 2006, 22, 169–188. [Google Scholar] [CrossRef]
- Hunter, J.A.; Crow, H.L. (Eds.) Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock; Geological Survey of Canada: Ottawa, ON, Canada, 2012; Open File 7078; p. 227. [Google Scholar] [CrossRef]
- Pilz, M.; Parolai, S.; Leyton, F.; Campos, J.; Zschau, J. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys. J. Int. 2009, 178, 713–728. [Google Scholar] [CrossRef] [Green Version]
- Haghshenas, E.; Bard, P.Y.; Theodoulidis, N. Empirical evaluation of microtremor H/V spectral ratio. Bull. Earthq. Eng. 2008, 6, 75–108. [Google Scholar] [CrossRef]
- Panou, A.; Theodulidis, N.; Hatzidimitriou, P.; Stylianidis, K.; Papazachos, C. Ambient noise horizontal-to-vertical spectral ratio in site effects estimation and correlation with seismic damage distribution in urban environment: The case of the city of Thessaloniki (Northern Greece). Soil Dyn. Earth. Eng. 2005, 25, 261–274. [Google Scholar] [CrossRef]
- Albarello, D.; Cesi, C.; Eulilli, V.; Guerrini, F.; Lunedei, E.; Paolucci, E.; Pileggi, D.; Puzzilli, L.M. The contribution of ambient vibration prospecting in seismic microzoning: An example from the area damaged by the April 6, 20009 L’Aquila (Italy) earthquake. Boll. Dii Geof. Teor. Appl. 2011, 52, 513–538. [Google Scholar]
- Maresca, R.; Nardone, L.; Gizzi, F.T.; Potenza, M.R. Ambient noise HVSR measurements in the Avellino historical centre and surrounding area (southern Italy). Correlation with surface geology and damage caused by the 1980 Irpinia-Basilicata earthquake. Measurements V 2018, 130, 211–222. [Google Scholar] [CrossRef]
- Mouzakiotis, E.; Karastathis, V.; Voulgaris, N.; Papadimitriou, P. Site Amplification Assessment in the East Corinth Gulf Using 3D Finite-Difference Modeling and Local Geophysical Data. Pure Appl. Geophys. 2020, 177, 3871–3889. [Google Scholar] [CrossRef]
- Gjini, A.; Cullufi, H.; Deneko, E.; Xhika, P. Behavior of structure type 82/2 (RC frame), during the earthquake of 26 November 2019 in Durrës, Albania. Res. Eng. Struct. Mater. 2021, 7, 595–615. [Google Scholar] [CrossRef]
- Braholli, E.; Menkshi, E. Geotourism potentials of geosites in Durrës municipality, Albania. In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2021; pp. 63–73. [Google Scholar]
- Xhafa, S.; Hasani, B. Urban Planning Challenges in the Peripheral Areas of Durres City (Porto Romano). Mediterr. J. Soc. Sci. 2013, 4, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Moiriat, D.; Tasellari, A.; Taylor, C. Influence of Structural and Site Factors on Earthquake Consequences in Durrës after the M 6.4 Albania Strong Motion of November 26, 2019. In Proceedings of the International Symposium on Durrës Earthquakes and Eurocodes (ISDEE-2020), Tirana, Albania, 21–22 September 2020. [Google Scholar]
- Shehu, R.; Shallo, M.; Kodra, A.; Vranaj, A.; Gjata, K.; Gjata, T.; Melo, V.; Yzeiri, D.; Bakiaj, H.; Xhomo, A.; et al. Geological Map of Albania in Scale 1:200.000; “Hamit Shijaku” Publishing-House: Tirana, Albania, 1983. [Google Scholar]
- Aliaj, S. Neotektonika dhe Sizmotektonika e Shqiperise. Master’s Thesis, Archive of Seismological Institute, Tirana, Albania, 1988. [Google Scholar]
- Aliaj, S.; Melo, V.; Hyseni, A.; Skrami, J.; Mehillka, L.L.; Muço, B.; Sulstarova, E.; Prifti, K.; Pasko, P.; Prillo, S. Neotectonic Structure of Albania Final Report in Archive of Seismological Institute of Academy of Sciences; Institute of Academy of Sciences: Tirana, Albania, 1996. [Google Scholar]
- Aliaj, S.; Baldassarre, G.; Shkupi, D. Quaternary subsidence zones in Albania: Some case studies. Bull. Eng. Geol. Environ. 2001, 59, 313–318. [Google Scholar] [CrossRef]
- Skrami, J. Structural and neotectonic features of the Periadriatic Depression (Albania) detected by seismic interpretation. Bull. Greek Geol. Soc. 2001, 34, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
- Xhomo, A.; Kodra, A.; Dimo, L.; Xhafa, Z.; Nazaj, S.; Nakuçi, V.; Yzeiraj, D.; Shallo, M.; Vranaj, A.; Melo, V. Geological Map of Albania, Scale 1:200 000; Geological Survey of Albania: Tirana, Albania, 2002. [Google Scholar]
- Koçiu, S.; Sulstarova, E.; Aliaj, S.; Duni, L.; Peçi, V.; Konomi, N.; Dakoli, H.; Fuga, I.; Goga, K.; Zeqo, A.; et al. Seismic Microzonation of Durresi Town, Internal Report; IGEWE: Tirana, Albania, 1985. (In Albanian) [Google Scholar]
- Mihaljevic, J.; Zupancic, P.; Kuka, N.; Kaluderovic, N.; Koçi, R.; Markusic, S.; Salic, R.; Dushi, E.; Begu, E.; Duni, L.; et al. BSHAP Seismic Source Characterization Models for the Western Balkan Region. Bull. Earthq. Engin. 2017, 23, 3963–3985. [Google Scholar] [CrossRef]
- Aliaj, S.; Sulstarova, E.; Muço, B.; Koçiu, S. Seismotectonic Map of Albania in Scale 1:500.000; Seismological Institute: Tirana, Albanian, 2000. [Google Scholar]
- Jouanne, F.; Mugnier, J.L.; Koci, R.; Bushati, S.; Matev, K.; Kuka, N.; Shinko, I.; Kociu, S.; Duni, L. GPS constrains on current tectonic of Albania. Tectonophysics 2012, 554–557, 50–62. [Google Scholar] [CrossRef]
- Aliaj, S.; Koçiu, S.; Muço, B.; Sulstarova, E. Seismicity, Seismotectonics and Seismic Hazard Assessment in Albania; Academy of Sciences of Albania: Tirana, Albania, 2010. [Google Scholar]
- Sulstarova, E.; Kociu, S.; Aliaj, S. Seismic Zonation of Albania; Publication of Academy of Sciences of Albania and Seismological Centre of Albania: Tirane, Albania, 1980; 297p. [Google Scholar]
- Papadopoulos, G.A.; Agalos, A.; Carydis, P.; Lekkas, E.; Mavroulis, S.; Triantafyllou, I. The 26 November 2019 Mw 6.4 AlbaniaDestructive Earthquake. Seismol. Res. Lett. 2020, 91, 3129–3138. [Google Scholar] [CrossRef]
- Ganas, A.; Elias, P.; Briole, P.; Cannavo, F.; Valkaniotis, S.; Tsironi, V.; Partheniou, E.I. Ground Deformation and Seismic Fault Model of the M6.4 Durres (Albania) Nov. 26, 2019 Earthquake, Based on GNSS/INSAR Observations. Geosciences 2020, 10, 210. [Google Scholar] [CrossRef]
- Lekkas, E.; Mavroulis, S.; Papa, D.; Carydis, P. The November 26, 2019 M 6.4 Durrës (Albania) Earthquake. Newsletter of Environmental, Disaster and Crises Management Strategies, 15, 2019. Available online: https://edcm.edu.gr/images/docs/newsletters/Newsletter_15_2019_Albania_EQ.pdf (accessed on 1 November 2022).
- Moshou, A.; Dushi, E.; Argyrakis, P. A Preliminary Report on the 26 November 2019, M=6.4 Durrës, Abania Earthquake, EMSC Reports. 2019. Available online: https://www.emsc-csem.org/Files/news/Earthquakes_reports/Preliminary_Report_Albania_26112019.pdf (accessed on 1 November 2022).
- Sulstarova, E.; Kociaj, S. The Catalogue of the Albanian Earthquakes; Ex-Seismological Center, the Academy of Sciences of Albania: Tirana, Albania, 1975. [Google Scholar]
- Rovida, A.; Antonucci, A. EPICA—European PreInstrumental Earthquake Catalogue; Version 1.1; Instituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Stucchi, M.; Rovida, A.; Gomez Capera, A.A.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.W.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef]
- Storchak, D.A.; Di Giacomo, D.; Engdahl, E.R.; Harris, J.; Bondár, I.; Lee, W.H.K.; Bormann, P.; Villaseñor, A. The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction. Phys. Earth Planet. Int. 2015, 239, 48–63. [Google Scholar] [CrossRef]
- Scordilis, E.; Papazachos, C.; Karakaisis, G.; Karakostas, V. Accelerating seismic crustal deformation before strong mainshocks in Adriatic and its importance for earthquake prediction. J. Seismol. 2004, 8, 57–70. [Google Scholar] [CrossRef]
- Anton, A.; Baballëku, M.; Baltzopoulos, G.; Blagojević, N.; Bothara, J.; Brûlé, S.; Brzev, S.; Carydis, P.; Duni, L.; Dushi, E.; et al. EERI Earthquake Reconnaissance Report-M6.4 Albania Earthquake on November 26 2019; Earthquake Engineering Research Institute: Oakland, CA, USA, 2022. [Google Scholar] [CrossRef]
- Van der Heiden, V.; Rietbrock, A.; Tilmann, F.; Schurr, B.; Dushi, E. The November 26, 2019 Mw(6.4) Albania Earthquake post-seismic Campaign preliminary results: Machine Learning-based Solutions. In Proceedings of the Scientific Symposium: Geosciences, Achievements and Future Challenges–2021 (SSGAFC2021), Tirana, Albania, 25 November 2021. [Google Scholar]
- Stefanidou, S.; Sotiriadis, D.; Klimis, N.; Margaris, B.; Sextos, A.; Theodoulidis, N. Preliminary aspects on ground motion, site characterization and structural damage of Durrës earthquake (Mw6.4, 26-11-2019). In Proceedings of the International Symposium on Durrës Earthquake and Eurocodes (ISDEE-2020), Tirana, Albania, 21–22 September 2020. [Google Scholar]
- Duni, L.; Theodoulidis, N. Short Note on the November 26, 2019, Durrës (Albania) M6.4 Earthquake: Strong Ground Motion with Emphasis in Durrës City. 2019. Available online: https://www.emsc-csem.org/Files/news/Earthquakes_reports/Short-Note_EMSC_31122019.pdf (accessed on 1 November 2022).
- Bard, P.-Y.; Campillo, M.; Chávez-Garcia, F.J.; Sánchez-Sesma, F. The Mexico Earthquake of September 19, 1985—A Theoretical Investigation of Large- and Small-scale Amplification Effects in the Mexico City Valley. Earthq. Spectra 1998, 4, 609–633. [Google Scholar] [CrossRef]
- Ademovic, N.; Hadzima-Nyarko, M.; Zagora, N. Influence of site effects on the seismic vulnerability of masonry and reinforced concrete buildings in Tuzla (Bosnia and Herzegovina). Bull. Earthq. Eng. 2022, 20, 2643–2681. [Google Scholar] [CrossRef]
- Bashir, K.; Debnath, R.; Saha, R. Estimation of local site effects and seismic vulnerability using geotechnical dataset at flyover site Agartala India. Acta Geophys. 2022, 70, 1003–1036. [Google Scholar] [CrossRef]
- Shakib, H.; Dardaei, S.; Farhangian, H.; Torkanbouri, N.E. Seismological Aspects and Seismic Behavior of Buildings During the M 7.3 Western Iran Earthquake in Sarpol-e-zahab Region. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 3063–3079. [Google Scholar] [CrossRef]
- Duni, L.; Kuka, N. Seismic hazard assessment and site-dependent response spectra parameters of the current seismic design code in Albania. Acta Geod. Geoph. Hung. 2004, 39, 161–176. [Google Scholar] [CrossRef]
- Kuka, N.; Duni, L. Probabilistic Assessment of Seismic Hazard of Albania, Internal Report; IGEWE: Tirana, Albania, 2007; p. 41. [Google Scholar]
- NATO Science for Peace program, SPS Reference 984374. Improvements in the Harmonized Seismic Hazard Maps for the Western Balkan Countries (2015). Multi-Year Project Final Report. 2015, p. 61. Available online: https://www.nato.int/science/studies_and_projects/nato_funded/pdf/983054.pdf (accessed on 1 November 2022).
- Kociu, S.; Kociu, L. Seismic risk reduction of big coastal cities in Albania. Coasts at the Millennium. In Proceedings of the 17th International Conference of the Coastal Society, Portland, OR, USA, 9–12 July 2012. [Google Scholar]
- Kociu, S.; Skrami, J. Seismic Microzonation of a New Metropolitan Area of Albania. In Proceedings of the American Geophysical Union, Fall Meeting 2006, (Abstract ID:S23E-0204), San Francisco, CA, USA, 11–15 December 2006. [Google Scholar]
- Kociu, S. Induced Seismic Impacts Observed in Coastal Area of Albania: Case Studies. In Proceedings of the Fifth International Conference on Case Histories in Geotechnical Engineering, New York, NY, USA, 13–17 April 2004. [Google Scholar]
- Duni, L.; Kuka, N.; Koçi, R.; Dushi, E. Shear Waves Velocity Using the MASW Method in Durrës City, Internal Report; IGEWE: Tirana, Albania, 2020. [Google Scholar]
- Theodoulidis, N.; Grendas, I.; Duni, L.; Dushi, E.; Kuka, N.; Koci, R.; Rrezart, B.; Gjuzi, O. Report on Ambient Noise Measurements and Data Analyses in Durrës City, Albania; Thessaloniki-Tirana, ITSAK Internal Report. 2020, p. 29. Available online: http://www.itsak.gr/uploads/news/earthquake_reports/Report_AmbientNoise_Durres_April2020.pdf (accessed on 1 November 2022).
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Vavrycuk, V.; Archuleta, R.; Halada, L. 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am. 2002, 92, 3042–3066. [Google Scholar] [CrossRef]
- Hisada, Y. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths. Bull. Seismol. Soc. Am. 1994, 84, 1456–1472. [Google Scholar] [CrossRef]
- Hisada, Y. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (part 2). Bull. Seismol. Soc. Am. 1995, 85, 1080–1093. [Google Scholar] [CrossRef]
- Maringue, J.; Mendoza, L.; Sáez, E.; Yañez, G.; Montalva, G.; Soto, V.; Ayala, F.; Perez-Estay, N.; Figueroa, R.; Sepúlveda, N.; et al. Geological and geotechnical investigation of the seismic ground response characteristics in some urban and suburban sites in Chile exposed to large seismic threats. Bull. Earthq. Eng. 2022, 20, 4895–4918. [Google Scholar] [CrossRef]
- Van Ginkel, J.; Ruigrok, E.; Stafleu, J.; Herber, R. Development of a seismic site-response zonation map for the Netherlands. Copernic. GmbH 2022, 22, 41–63. [Google Scholar] [CrossRef]
- Panou, A.; Theodoulidis, N.; Hatzidimitriou, P.; Savvaidis, A.; Papazachos, C. Reliability of ambient noise horizontal-to-vertical spectral ratio in urban environment: The case of Thessaloniki city (Northern Greece). Pageoph 2005, 162, 891–912. [Google Scholar] [CrossRef]
- Bustos, J.; Pastén, C.; Pavez, D.; Acevedo, M.; Ruiz, S.; Astroza, R. Two-dimensional simulation of the seismic response of the Santiago Basin, Chile. Soil Dyn. Earthq. Eng. 2023, 164, 107569. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P. Quantitative Seismology-Theory and Methods; Freeman, W.H. & Company: New York, NY, USA, 1980; 932p. [Google Scholar]
- Bertil, D.; Bethoux, N.; Campillo, M.; Massinon, B. Modeling crystal phases in southeast France for focal depth determination. Earth Plan. Sci. Lett. 1989, 95, 341–358. [Google Scholar]
- Guiller, B.J.-L.; Chatelain, M.; Hellel, D.; Machane, N.; Mezouer, R.; Ben Salem, E.H. Oubaiche Smooth bumps in H/V curves over a broad area from single-station ambient noise recordings are meaningful and reveal the importance of Q in array processing: The Boumerdes (Algeria) case. Geoph. Res. Lett. 2005, 32, L24306. [Google Scholar] [CrossRef]
- Ito, E.; Nakano, K.; Nagashima, F.; Kawase, H. A Method to Directly Estimate S-Wave Site Amplification Factor from Horizontal-to-Vertical Spectral Ratio of Earthquakes (eHVSRs). Bull. Seismol. Soc. Am. 2020, 110, 2892–2911. [Google Scholar] [CrossRef]
- Theodoulidis, N.; Maragakis, I.; Grendas, I.; Hatzidimitriou, P.; Kawase, H.; Ito, E.; Triantafyllidis, P. Estimation of S-wave Horizontal Spectral Amplification factor (HSAF) from earthquake Horizontal-toVertical Spectral ratio (eHVSR) in Greece. In Proceedings of the 3th European Conference on Earthquake Engineering and Seismology, Bucharest, Romania, 4–9 September 2022; p. 6460. [Google Scholar]
Date | Latitude | Longitude | Depth | Mag. | Location |
---|---|---|---|---|---|
yyyy/mm/dd | N-S | E-W | km | M | |
58 BC | 41.2 | 19.3 | 33 | 6.5 * | Durres |
334 | 41.3 | 19.5 | 33 | 6.2 * | Durres |
346 | 41.3 | 19.3 | 33 | 6.5 * | Durres |
506 | 41.3 | 19.5 | 33 | 6.2 * | Durres |
521 | 41.3 | 19.5 | 33 | 6.0 * | Durres |
1273 | 41.2 | 19.3 | 33 | 6.7 * | Durres |
1617 | 19.700 | 41.500 | 15 | 6.2 * | Kruja |
1852 | 19.500 | 41.600 | 15 | 6.2 * | Rodoni Cape |
1860 | 19.70 | 41.300 | 15 | 6.2 * | Ndroqi |
1870 | 19.446 | 41.314 | 15 | 6.5 * | Durres |
1926 | 19.50 | 41.300 | 11 | 6.3 | Durres |
1934 | 19.60 | 41.250 | 12 | 5.7 | Ndroqi |
1970 | 19.60 | 41.15 | 55 | 5.6 | Vrapi |
1975 | 19.30 | 41.50 | 15 | 5.4 | Rodoni Cape |
1979 | 42.16 | 18.87 | 16 | 6.9 | Montenegro |
1988 | 41.22 | 19.81 | 5 | 5.7 | Tirana |
2019, Sept. 21 | 19.503 | 41.476 | 23.4 | 5.6 | Durres |
2019, Nov. 26 | 19.469 | 41.421 | 20.5 | 6.4 | Durres |
Thickness (m) | Lithology | Granulometry | ϒ (T/m3) | Δ (T/m3) | δ (T/m3) | W % | n % | ϕ | Φ (0) | C (kg/cm2) | μ (m/24 h) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay | Grit | Sand | |||||||||||
0–3 m | Marshy-lagoon sub sand with peat | 4.0 | 24 | 72 | 2.64 | 1.84 | 1.31 | 38 | 39 | 0.8 | 24 | 0.05 | - |
3–15 m | Powdery water-saturated sand | 3.0 | 15 | 82 | 2.66 | 1.86 | 1.48 | 35 | 48 | 0.89 | 26 | 0.05 | 1.0 |
15–28 m | Sub-clay | 17 | 60 | 23 | 2.68 | 1.89 | 1.5 | 35 | 48 | 0.92 | 14 | 0.1 | 0.05 |
28–130 m | Clay | 30 | 60 | 10 | 2.72 | 1.9 | 1.6 | 38 | 49 | 0.95 | 14 | 0.25 | - |
>130 m | Clayey-sand basement rock | - | - | - | 2.75 | 2.08 | 1.9 | 11.13 | 40 | 0.68 | - | - | - |
2West | 1West | P38 | DURR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H (m) | Vs (m/s) | Vp (m/s) | H(m) | Vs (m/s) | Vp (m/s) | H(m) | Vs (m/s) | Vp (m/s) | H(m) | Vs (m/s) | Vp (m/s) |
20 | 190 | 1500 | 10 | 80 | 400 | 10 | 150 | 1450 | 10 | 120 | 1400 |
10 | 210 | 1550 | 5 | 120 | 1400 | 20 | 235 | 1550 | 16.7 | 201 | 1500 |
20 | 233 | 1580 | 10 | 201 | 1500 | 30 | 250 | 1570 | 23.3 | 233 | 1580 |
0 | 700 | 2000 | 55 | 233 | 1580 | 80 | 265 | 1600 | 40 | 242 | 1600 |
0 | 700 | 2000 | 0 | 700 | 2000 | 0 | 700 | 2000 | |||
BHA | SH17 | BH15 | P40 | ||||||||
H (m) | Vs (m/s) | Vp (m/s) | H(m) | Vs (m/s) | Vp (m/s) | H(m) | Vs (m/s) | Vp (m/s) | H(m) | Vs (m/s) | Vp (m/s) |
10 | 120 | 1400 | 40 | 120 | 1400 | 12 | 120 | 1400 | 10 | 140 | 1450 |
20 | 201 | 1500 | 10 | 201 | 1500 | 13 | 201 | 1500 | 20 | 240 | 1550 |
130 | 238 | 1580 | 55 | 233 | 1580 | 30 | 233 | 1580 | 20 | 300 | 1710 |
0 | 700 | 2000 | 0 | 700 | 2000 | 0 | 700 | 2000 | 0 | 700 | 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoulidis, N.; Dushi, E.; Duni, L.; Grendas, I.; Panou, A.; Hajrullai, A.; Kuka, N.; Koci, R. Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake. Appl. Sci. 2022, 12, 11309. https://doi.org/10.3390/app122211309
Theodoulidis N, Dushi E, Duni L, Grendas I, Panou A, Hajrullai A, Kuka N, Koci R. Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake. Applied Sciences. 2022; 12(22):11309. https://doi.org/10.3390/app122211309
Chicago/Turabian StyleTheodoulidis, Nikos, Edmond Dushi, Llambro Duni, Ioannis Grendas, Areti Panou, Ardit Hajrullai, Neki Kuka, and Rexhep Koci. 2022. "Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake" Applied Sciences 12, no. 22: 11309. https://doi.org/10.3390/app122211309
APA StyleTheodoulidis, N., Dushi, E., Duni, L., Grendas, I., Panou, A., Hajrullai, A., Kuka, N., & Koci, R. (2022). Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake. Applied Sciences, 12(22), 11309. https://doi.org/10.3390/app122211309