Industry 4.0 and Lean Six Sigma Integration: A Systematic Review of Barriers and Enablers
Abstract
:1. Introduction
2. Theoretical Background
2.1. Industry 4.0 Technology
2.2. Lean Six Sigma
2.3. I4.0 and LSS Integration
3. Methodology
- The paper must be in English and peer-reviewed. In addition, it must pertain to business case studies, review articles, survey studies, conceptual frameworks, and focus groups;
- Articles must focus on applying I4.0 technology with an LSS tool or method.
- Exclude conferences and non-peer-reviewed articles, such as books and editorials;
- Articles were excluded when “Lean” was used in a field other than the lean management domain;
- Articles that considered technologies unrelated to I4.0 were excluded.
4. Review and Discussion
4.1. Analysed Papers’ Main Features
4.2. Integration Enablers
4.3. Integration Barriers
4.4. Approaches Facilitating Integration
5. Identified Gaps and Directions for Future Research
5.1. Little Attention Has Been Paid So Far to the Integration of I4.0 Technologies and SS Techniques
5.2. Lack of a Case Study Quantifying the Benefits of the Integration
5.3. Studies on Implementation Patterns of I4.0 and LSS Integration Are Rare
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Bibliographic Information |
---|---|
1 | Ciliberto, C., Szopik-Depczyńska, K., Tarczyńska-Łuniewska, M., Ruggieri, A., & Ioppolo, G. Enabling the Circular Economy transition: A sustainable lean manufacturing recipe for Industry 4.0, 2021, 10.1002/BSE.2801 |
2 | Anosike, A., Alafropatis, K., Garza-Reyes, J. A., Kumar, A., Luthra, S., & Rocha-Lona, L. Lean manufacturing and internet of things—A synergetic or antagonist relationship? 2021, 10.1016/J.COMPIND.2021.103464 |
3 | Tortorella, G., Sawhney, R., Jurburg, D., Paula, I. C. de, Tlapa, D., & Thurer, M. Towards the proposition of a Lean Automation framework: Integrating Industry 4.0 into Lean Production. 2021, 10.1108/JMTM-01-2019-0032/FULL/XML |
4 | Yilmaz, A., Dora, M., Hezarkhani, B., & Kumar, M. Lean and industry 4.0: Mapping determinants and barriers from a social, environmental, and operational perspective, 2021, 10.1016/J.TECHFORE.2021.121320 |
5 | Boudella, M. E. A., Sahin, E., & Dallery, Y. (2018). Kitting optimisation in Just-in-Time mixed-model assembly lines: Assigning parts to pickers in a hybrid robot–operator kitting system. International Journal of Production Research, 56(16). https://doi.org/10.1080/00207543.2017.1418988 |
6 | Erkayman, B. Transition to a JIT production system through ERP implementation: A case from the automotive industry, 2019, 10.1080/00207543.2018.1527048 |
7 | Parra, B. B., Cerra, P. P., & Peñín, P. I. Á. Combining ERP, Lean Philosophy and ICT: An Industry 4.0 Approach in an SME in the Manufacturing Sector in Spain, 2021, 10.1080/10429247.2021.2000829 |
8 | Wijaya, S., Hariyadi, S., Debora, F., & Supriadi, G. Design and implementation of poka-yoke system in stationary spot-welding production line utilizing internet-of-things platform, 2020, 10.5614/itbj.ict.res.appl.2020.14.1.3 |
9 | Lyu, J. J., Chen, P. S., & Huang, W. T. Combining an automatic material handling system with lean production to improve outgoing quality assurance in a semiconductor foundry, 2021, 10.1080/09537287.2020.1769217 |
10 | Parthanadee, P., & Buddhakulsomsiri, J. Production efficiency improvement in batch production system using value stream mapping and simulation: A case study of the roasted and ground coffee industry, 2014, 10.1080/09537287.2012.702866 |
11 | Atieh, A. M., Kaylani, H., Almuhtady, A., & Al-Tamimi, O. A value stream mapping and simulation hybrid approach: Application to glass industry. 2016, 10.1007/s00170-015-7805-8 |
12 | Chen, K. M., Chen, J. C., & Cox, R. A. Real time facility performance monitoring system using RFID technology, 2012, 10.1108/01445151211212334/FULL/XML |
13 | Ilangakoon, T. S., Weerabahu, S. K., Samaranayake, P., & Wickramarachchi, R. Adoption of Industry 4.0 and lean concepts in hospitals for healthcare operational performance improvement, 2021, 10.1108/IJPPM-12-2020-0654 |
14 | Tortorella, G. L., & Fettermann, D. Implementation of industry 4.0 and lean production in brazilian manufacturing companies, 2018, 10.1080/00207543.2017.1391420 |
15 | Sanders, A., Elangeswaran, C., & Wulfsberg, J. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing, 2016, 10.3926/jiem.1940 |
16 | Kolberg, D., Knobloch, J., & Zühlke, D. Towards a lean automation interface for workstations, 2017, 10.1080/00207543.2016.1223384 |
17 | Rosin, F., Forget, P., Lamouri, S., & Pellerin, R. Impacts of Industry 4.0 technologies on Lean principles, 2020, 10.1080/00207543.2019.1672902 |
18 | Buer, S. V., Strandhagen, J. O., & Chan, F. T. S. The link between industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda, 2018, 10.1080/00207543.2018.1442945 |
19 | Shamim, S., Cang, S., Yu, H., & Li, Y. Examining the feasibilities of Industry 4.0 for the hospitality sector with the lens of management practice, 2017, 10.3390/en10040499 |
20 | Belhadi, A., Kamble, S. S., Gunasekaran, A., Zkik, K., M, D. K., & Touriki, F. E. A Big Data Analytics-driven Lean Six Sigma framework for enhanced green performance: A case study of chemical company, 2021, 10.1080/09537287.2021.1964868 |
21 | Saabye, H., Kristensen, T. B., & Wæhrens, B. V. Real-time data utilization barriers to improving production performance: An in-depth case study linking lean management and industry 4.0 from a learning organization perspective. 2020, 10.3390/su12218757 |
22 | Belhadi, A., Kamble, S. S., Zkik, K., Cherrafi, A., & Touriki, F. E. The integrated effect of Big Data Analytics, Lean Six Sigma and Green Manufacturing on the environmental performance of manufacturing companies: The case of North Africa, 2020, 10.1016/J.JCLEPRO.2019.119903 |
23 | Kamble, S., Gunasekaran, A., & Dhone, N. C. Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies, 2020, 10.1080/00207543.2019.1630772 |
24 | Ahmed, A., Page, J., & Olsen, J. Enhancing Six Sigma methodology using simulation techniques: Literature review and implications for future research, 2020, 10.1108/IJLSS-03-2018-0033 |
25 | Goh, M., & Goh, Y. M. Lean production theory-based simulation of modular construction processes, 2019, 10.1016/j.autcon.2018.12.017 |
26 | Tortorella, G., Miorando, R., & Cawley, A. F. M. The moderating effect of Industry 4.0 on the relationship between lean supply chain management and performance improvement, 2019, 10.1108/SCM-01-2018-0041 |
27 | Pereira, A. C., Dinis-Carvalho, J., Alves, A. C., & Arezes, P. How Industry 4.0 can enhance lean practices, 2019, 10.5937/fmet1904810P |
28 | Xu, G., Li, M., Chen, C. H., & Wei, Y. Cloud asset-enabled integrated IoT platform for lean prefabricated construction, 2018, 10.1016/j.autcon.2018.05.012 |
29 | Ma, J., Wang, Q., & Zhao, Z. SLAE–CPS: Smart lean automation engine enabled by cyber-physical systems technologies, 2017, 10.3390/s17071500 |
30 | Efimova, A., Briš, P., & Efimov, A. A Bibliometric Analysis of the Evolution of Six Sigma in the Context of Industry 4.0, 2021, 10.5755/j01.ee.32.4.28536 |
31 | Rafique, M. Z., Rahman, M. N. A., Saibani, N., Arsad, N., & Saadat, W. RFID impacts on barriers affecting lean manufacturing,2016, 10.1108/IMDS-10-2015-0427 |
32 | Chen, J. C., Cheng, C. H., Huang, P. B., Wang, K. J., Huang, C. J., & Ting, T. C. Warehouse management with lean and RFID application: A case study, 2013, 10.1007/s00170-013-5016-8 |
33 | LaSelle, R. Automating sterile supply departments protects patients. A robotics company specializing in medical applications suggests that hospitals can benefit from lessons learned in lean manufacturing, 2011, PMID: 21739810. |
34 | Southard, P. B., Chandra, C., & Kumar, S. RFID in healthcare: A Six Sigma DMAIC and simulation case study, 2012, 10.1108/09526861211221491 |
35 | Saygin, C., & Sarangapani, J. Radio Frequency Identification (RFID) enabling lean manufacturing, 2011, 10.1504/IJMR.2011.043234 |
36 | Tortorella, G. L., Rossini, M., Costa, F., Staudacher, A. P., & Sawhney, R. A comparison on Industry 4.0 and Lean Production between manufacturers from emerging and developed economies, 2021, 10.1080/14783363.2019.1696184 |
37 | Goienetxea Uriarte, A., Ng, A. H. C., & Urenda Moris, M. Bringing together Lean and simulation: A comprehensive review, 2020, 10.1080/00207543.2019.1643512 |
38 | Pinho, C., & Mendes, L. IT in lean-based manufacturing industries: Systematic literature review and research issues, 2017, 10.1080/00207543.2017.1384585 |
39 | Wagner, T., Herrmann, C., & Thiede, S. Industry 4.0 Impacts on Lean Production Systems, 2017, Procedia CIRP, 10.1016/j.procir.2017.02.041 |
40 | Ghobadian, A., Talavera, I., Bhattacharya, A., Kumar, V., Garza-Reyes, J. A., & O’Regan, N. Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability, 2020, 10.1016/j.ijpe.2018.06.001 |
41 | Kościelniak, H., Łęgowik-Małolepsza, M., & Łęgowik-Świącik, S. (2019). The Application of Information Technologies in Consideration of Augmented Reality and Lean Management of Enterprises in the Light of Sustainable, 2019, 10.3390/su11072157 |
42 | Demirdöğen, G., Işik, Z., & Arayici, Y. Lean management framework for healthcare facilities integrating BIM, BEPS and big data analytics, 2020, 10.3390/su12177061 |
43 | Raut, R. D., Mangla, S. K., Narwane, V. S., Dora, M., & Liu, M. Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains., 2021, 10.1016/j.tre.2020.102170 |
44 | Laux, C., Li, N., Seliger, C., & Springer, J. Impacting Big Data analytics in higher education through Six Sigma techniques, 2017, 10.1108/IJPPM-09-2016-0194 |
45 | Valamede, L. S., & Akkari, A. C. S. Lean 4.0: A new holistic approach for the integration of lean manufacturing tools and digital technologies, 2020, 10.33889/IJMEMS.2020.5.5.066 |
46 | Cifone, F. D., Hoberg, K., Holweg, M., & Staudacher, A. P. ‘Lean 4.0′: How can digital technologies support lean practices?, 2021, 10.1016/j.ijpe.2021.108258 |
47 | Núñez-Merino, M., Maqueira-Marín, J. M., Moyano-Fuentes, J., & Martínez-Jurado, P. J. Information and digital technologies of Industry 4.0 and Lean supply chain management: A systematic literature review, 2020, 10.1080/00207543.2020.1743896 |
48 | Rossini, M., Costa, F., Tortorella, G. L., & Portioli-Staudacher, A. The interrelation between Industry 4.0 and lean production: An empirical study on European manufacturers, 2019, 10.1007/s00170-019-03441-7 |
49 | Mayr, A., Weigelt, M., Kühl, A., Grimm, S., Erll, A., Potzel, M., & Franke, J. Lean 4.0—A conceptual conjunction of lean management and Industry 4.0., 2018, Procedia CIRP, 2018, 10.1016/J.PROCIR.2018.03.292 |
50 | Ghobakhloo, M., & Fathi, M. Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing, 2020, 10.1108/JMTM-11-2018-0417 |
51 | Sony, M. Design of cyber physical system architecture for industry 4.0 through lean six sigma: Conceptual foundations and research issues, 2020, 10.1080/21693277.2020.1774814 |
52 | Rossini, M., Cifone, F. D., Kassem, B., Costa, F., & Portioli-Staudacher, A. Being lean: How to shape digital transformation in the manufacturing sector, 2021, 10.1108/JMTM-12-2020-0467 |
53 | R, V., & Vinodh, S. Development of a structural model based on ISM for analysis of barriers to integration of leanwith industry 4.0, 2021, 10.1108/TQM-07-2020-0151 |
54 | Ramadan, M., Salah, B., Othman, M., & Ayubali, A. A. Industry 4.0-based real-time scheduling and dispatching in lean manufacturing systems, 2020, 10.3390/su12062272 |
55 | Ghaithan, A., Khan, M., Mohammed, A., & Hadidi, L. Impact of industry 4.0 and lean manufacturing on the sustainability performance of plastic and petrochemical organizations in saudi arabia, 2021, 10.3390/su132011252 |
56 | Salvadorinho, J., & Teixeira, L. Stories Told by Publications about the Relationship between Industry 4.0 and Lean: Systematic Literature Review and Future Research Agenda, 2021, 10.3390/publications9030029 |
57 | Sader, S., Husti, I., & Daróczi, M. Industry 4.0 as a key enabler toward successful implementation of total quality management practices, 2019, 10.3311/PPso.12675 |
58 | Li, L. R. Lean smart manufacturing in Taiwan-Focusing on the bicycle industry, 2019, 10.3390/joitmc5040079 |
59 | Jiménez, M., Espinosa, M. D. M., Domínguez, M., Romero, M., & Awad, T. Adaptation of the lean 6S methodology in an industrial environment under sustainability and industry 4.0 criteria, 2021, 10.3390/su132212449 |
60 | Bittencourt, V. L., Alves, A. C., & Leão, C. P. Lean Thinking contributions for Industry 4.0: A Systematic Literature Review, 2019, 10.1016/J.IFACOL.2019.11.310 |
61 | Ciano, M. P., Dallasega, P., Orzes, G., & Rossi, T. One-to-one relationships between Industry 4.0 technologies and Lean Production techniques: A multiple case study, 2021, 10.1080/00207543.2020.1821119 |
62 | Tortorella, G., Miorando, R., Caiado, R., Nascimento, D., & Staudacher, A. P. The mediating effect of employees’ involvement on the relationship between Industry 4.0 and operational performance improvement, 2021, 10.1080/14783363.2018.1532789 |
63 | Kumar, P., Bhadu, J., Singh, D., & Bhamu, J. Integration between Lean, Six Sigma and Industry 4.0 technologies, 2021, 10.1504/IJSSCA.2021.120224 |
64 | Rossini, M., Costa, F., Tortorella, G. L., Valvo, A., & Portioli-Staudacher, A. Lean Production and Industry 4.0 integration: How Lean Automation is emerging in manufacturing industry, 2021, 10.1080/00207543.2021.1992031 |
65 | Vlachos, I. P., Pascazzi, R. M., Zobolas, G., Repoussis, P., & Giannakis, M. Lean manufacturing systems in the area of Industry 4.0: A lean automation plan of AGVs/IoT integration, 2021, 10.1080/09537287.2021.1917720 |
66 | Chiarini, A., & Kumar, M. Lean Six Sigma and Industry 4.0 integration for Operational Excellence: Evidence from Italian manufacturing companies, 2021, 10.1080/09537287.2020.1784485 |
67 | Fortuny-Santos, J., Ruiz-de-Arbulo López, P., Luján-Blanco, I., & Pin-Kuo, C. Assessing the synergies between lean manufacturing and Industry 4.0, 2020, 10.37610/dyo.v0i71.579 |
68 | Chen, J. C., Cheng, C.-H., & Huang, P. B. Supply chain management with lean production and RFID application: A case study, 2013, 10.1016/j.eswa.2012.12.047 |
69 | Dave, B., Kubler, S., Främling, K., & Koskela, L. Opportunities for enhanced lean construction management using Internet of Things standards, 2016, 10.1016/j.autcon.2015.10.009 |
70 | Gupta, S., Modgil, S., & Gunasekaran, A. Big data in lean six sigma: A review and further research directions, 2020, 10.1080/00207543.2019.1598599 |
71 | Bittencourt, V. L., Alves, A. C., & Leão, C. P. Industry 4.0 triggered by Lean Thinking: Insights from a systematic literature review, 2021, 10.1080/00207543.2020.1832274 |
72 | Reyes, J., Mula, J., & Díaz-Madroñero, M. Development of a conceptual model for lean supply chain planning in industry 4.0: Multidimensional analysis for operations management, 2021, 10.1080/09537287.2021.1993373 |
73 | Yadav, N., Shankar, R., & Singh, S. P. Critical success factors for lean six sigma in quality 4.0, 2021, 10.1108/IJQSS-06-2020-0099 |
74 | Park, S. H., Dahlgaard-Park, S. M., & Kim, D.-C. New Paradigm of Lean Six Sigma in the 4th Industrial Revolution Era, 2020, 10.12776/qip.v24i1.1430 |
References
- Snee, R.D. Lean Six Sigma—Getting better all the time. Int. J. Lean Six Sigma 2010, 1, 9–29. [Google Scholar] [CrossRef]
- Anass, C.; Amine, B.; Ibtissam, E.H.; Bouhaddou, I.; Elfezazi, S. Industry 4.0 and Lean Six Sigma: Results from a Pilot Study. In Advances in Integrated Design and Production; Saka, A., Choley, J.-Y., Louati, J., Chalh, Z., Barkallah, M., Alfidi, M., Amar, M.B., Chaari, F., Haddar, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 613–619. [Google Scholar] [CrossRef]
- Barcia, K.F.; Garcia-Castro, L.; Abad-Moran, J. Lean Six Sigma Impact Analysis on Sustainability Using Partial Least Squares Structural Equation Modeling (PLS-SEM): A Literature Review. Sustainability 2022, 14, 3051. [Google Scholar] [CrossRef]
- Laureani, A.; Antony, J. Standards for Lean Six Sigma certification. Int. J. Product. Perf Mgmt 2011, 61, 110–120. [Google Scholar] [CrossRef]
- Kagerman, H.; Wahlster, W.; Helbig, J. Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. Natl. Acad. Sci. Eng. 2022, 2013, 5. Available online: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/ (accessed on 5 April 2022).
- Bassi, L. Industry 4.0: Hope, hype or revolution? In Proceedings of the RTSI 2017—IEEE 3rd International Forum on Research and Technologies for Society and Industry, Modena, Italy, 11–13 September 2017. [Google Scholar] [CrossRef]
- Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The industrial management of SMEs in the era of Industry 4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.; Desai, T.N. Lean Six Sigma: A categorized review of the literature. Int. J. Lean Six Sigma 2016, 7, 2–24. [Google Scholar] [CrossRef]
- Buer, S.-V.; Semini, M.; Strandhagen, J.O.; Sgarbossa, F. The complementary effect of lean manufacturing and digitalisation on operational performance. Int. J. Prod. Res. 2021, 59, 1976–1992. [Google Scholar] [CrossRef]
- Tissir, S.; Cherrafi, A.; Chiarini, A.; Elfezazi, S.; Bag, S. Lean Six Sigma and Industry 4.0 combination: Scoping review and perspectives. Total Qual. Manag. Bus. Excell. 2022, 1–30. [Google Scholar] [CrossRef]
- Pagliosa, M.; Tortorella, G.; Ferreira, J.C.E. Industry 4.0 and Lean Manufacturing: A systematic literature review and future research directions. J. Manuf. Technol. Manag. 2021, 32, 543–569. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Rossini, M.; Costa, F.; Staudacher, A.P.; Sawhney, R. A comparison on Industry 4.0 and Lean Production between manufacturers from emerging and developed economies. Total Qual. Manag. Bus. Excell. 2021, 32, 11–12. [Google Scholar] [CrossRef]
- Antony, J.; Snee, R.; Hoerl, R. Lean Six Sigma: Yesterday, today and tomorrow. Int. J. Qual. Reliab. Manag. 2017, 34, 1073–1093. [Google Scholar] [CrossRef]
- Kumar, P.; Bhadu, J.; Singh, D.; Bhamu, J. Integration between Lean, Six Sigma and Industry 4.0 technologies. Int. J. Six Sigma Compet. Advant. 2021, 13, 19. [Google Scholar] [CrossRef]
- Sodhi, H. When Industry 4.0 meets Lean Six Sigma: A review. Ind. Eng. J. 2020, 13, 1. [Google Scholar] [CrossRef]
- Sordan, J.E.; Oprime, P.C.; Pimenta, M.L.; da Silva, S.L.; González, M.O.A. Contact points between Lean Six Sigma and Industry 4.0: A systematic review and conceptual framework. Int. J. Qual. Reliab. Manag. 2021, 39, 2155–2183. [Google Scholar] [CrossRef]
- Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Culot, G.; Nassimbeni, G.; Orzes, G.; Sartor, M. Behind the definition of Industry 4.0: Analysis and open questions. Int. J. Prod. Econ. 2020, 226, 107617. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar] [CrossRef] [Green Version]
- Drath, R.; Horch, A. Industrie 4.0: Hit or Hype? IEEE Ind. Electron. Mag. 2014, 8, 56–58. [Google Scholar] [CrossRef]
- Masood, T.; Sonntag, P. Industry 4.0: Adoption challenges and benefits for SMEs. Comput. Ind. 2020, 121, 103261. [Google Scholar] [CrossRef]
- Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008; pp. 363–369. [Google Scholar] [CrossRef] [Green Version]
- Chiarini, A.; Kumar, M. Lean Six Sigma and Industry 4.0 integration for Operational Excellence: Evidence from Italian manufacturing companies. Prod. Plan. Control 2021, 32, 1084–1101. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Xu, G.; Li, M.; Chen, C.H.; Wei, Y. Cloud asset-enabled integrated IoT platform for lean prefabricated construction. Autom. Constr. 2018, 93, 123–134. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Woodall, W.H. An Overview of Six Sigma. Int. Stat. Rev. 2008, 76, 329–346. [Google Scholar] [CrossRef]
- Womack, J.P.; Jones, D.T. Lean Thinking—Banish Waste and Create Wealth in your Corporation. J. Oper. Res. Soc. 1997, 48, 1148. [Google Scholar] [CrossRef]
- Patel, A.S.; Patel, K.M. Critical review of literature on Lean Six Sigma methodology. Int. J. Lean Six Sigma 2021, 12, 627–674. [Google Scholar] [CrossRef]
- Hilton, R.J.; Sohal, A. A conceptual model for the successful deployment of Lean Six Sigma. Int. J. Qual. Reliab. Manag. 2012, 29, 54–70. [Google Scholar] [CrossRef]
- Panayiotou, N.A.; Stergiou, K.E. A systematic literature review of lean six sigma adoption in European organizations. Int. J. Lean Six Sigma 2021, 12, 264–292. [Google Scholar] [CrossRef]
- Anosike, A.; Alafropatis, K.; Garza-Reyes, J.A.; Kumar, A.; Luthra, S.; Rocha-Lona, L. Lean manufacturing and internet of things—A synergetic or antagonist relationship? Comput. Ind. 2021, 129, 103464. [Google Scholar] [CrossRef]
- Ciano, M.P.; Dallasega, P.; Orzes, G.; Rossi, T. One-to-one relationships between Industry 4.0 technologies and Lean Production techniques: A multiple case study. Int. J. Prod. Res. 2021, 59, 5. [Google Scholar] [CrossRef]
- Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Impacts of Industry 4.0 technologies on Lean principles. Int. J. Prod. Res. 2020, 58, 1644–1661. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.S.; Zkik, K.; Cherrafi, A.; Touriki, F.E. The integrated effect of Big Data Analytics, Lean Six Sigma and Green Manufacturing on the environmental performance of manufacturing companies: The case of North Africa. J. Clean. Prod. 2020, 252, 119903. [Google Scholar] [CrossRef]
- Pereira, A.C.; Dinis-Carvalho, J.; Alves, A.C.; Arezes, P. How Industry 4.0 can enhance lean practices. FME Trans. 2019, 47, 4. [Google Scholar] [CrossRef] [Green Version]
- Fogarty, D.J. Lean Six Sigma and Big Data: Continuing to Innovate and Optimize Business Processes. J. Manag. 2015, 1, 2. [Google Scholar] [CrossRef]
- Bitran, G.R.; Tirupati, D. Chapter 10 Hierarchical production planning. In Handbooks in Operations Research and Management Science, 4th ed.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 523–568. [Google Scholar] [CrossRef]
- Cifone, F.D.; Hoberg, K.; Holweg, M.; Staudacher, A.P. ‘Lean 4.0’: How can digital technologies support lean practices? Int. J. Prod. Econ. 2021, 241, 108258. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Dhone, N.C. Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. Int. J. Prod. Res. 2020, 58, 5. [Google Scholar] [CrossRef]
- Tortorella, G.; Sawhney, R.; Jurburg, D.; de Paula, I.C.; Tlapa, D.; Thurer, M. Towards the proposition of a Lean Automation framework: Integrating Industry 4.0 into Lean Production. J. Manuf. Technol. Manag. 2021, 32, 593–620. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Fettermann, D. Implementation of industry 4.0 and lean production in brazilian manufacturing companies. Int. J. Prod. Res. 2018, 56, 8. [Google Scholar] [CrossRef]
- Valamede, L.S.; Akkari, A.C.S. Lean 4.0: A new holistic approach for the integration of lean manufacturing tools and digital technologies. Int. J. Math. Eng. Manag. Sci. 2020, 5, 5. [Google Scholar] [CrossRef]
- Yilmaz, A.; Dora, M.; Hezarkhani, B.; Kumar, M. Lean and industry 4.0: Mapping determinants and barriers from a social, environmental, and operational perspective. Technol. Forecast. Soc. Chang. 2021, 175, 121320. [Google Scholar] [CrossRef]
- Atieh, A.M.; Kaylani, H.; Almuhtady, A.; Al-Tamimi, O. A value stream mapping and simulation hybrid approach: Application to glass industry. Int. J. Adv. Manuf. Technol. 2016, 84, 5–8. [Google Scholar] [CrossRef]
- Solke, N.S.; Shah, P.; Sekhar, R.; Singh, T.P. Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry. Glob. J. Flex. Syst. Manag. 2022, 23, 89–112. [Google Scholar] [CrossRef]
- Stojanovic, L.; Dinic, M.; Stojanovic, N.; Stojadinovic, A. Big-data-driven anomaly detection in industry (4.0): An approach and a case study. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 1647–1652. [Google Scholar] [CrossRef]
- Gupta, S.; Modgil, S.; Gunasekaran, A. Big data in lean six sigma: A review and further research directions. Int. J. Prod. Res. 2020, 58, 947–969. [Google Scholar] [CrossRef]
- Kuthe, A.M.; Tharakan, B.D. Application of ANN in Six Sigma DMADV and its comparison with regression analysis in view of a case study in a leading steel industry. Int. J. Six Sigma Compet. Advant. 2009, 5, 59–74. [Google Scholar] [CrossRef]
- Kolberg, D.; Knobloch, J.; Zühlke, D. Towards a lean automation interface for workstations. Int. J. Prod. Res. 2017, 55, 10. [Google Scholar] [CrossRef]
- Yadav, N.; Shankar, R.; Singh, S.P. Impact of Industry4.0/ICTs, Lean Six Sigma and quality management systems on organisational performance. TQM J. 2020, 32, 815–835. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; EBSE 2007-001; Keele University and Durham University Joint Report; EBSE: Goyang, Korean, 2007; Volume 2. [Google Scholar]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Dixit, A.; Jakhar, S.K.; Kumar, P. Does lean and sustainable manufacturing lead to Industry 4.0 adoption: The mediating role of ambidextrous innovation capabilities. Technol. Forecast. Soc. Chang. 2021, 175, 121328. [Google Scholar] [CrossRef]
- Fonseca, L.M. Industry 4.0 and the digital society: Concepts, dimensions and envisioned benefits. Proc. Int. Conf. Bus. Excell. 2018, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2020, 58, 6. [Google Scholar] [CrossRef]
- Bittencourt, V.L.; Alves, A.C.; Leão, C.P. Lean Thinking contributions for Industry 4.0: A Systematic Literature Review. IFAC-Pap 2019, 52, 904–909. [Google Scholar] [CrossRef]
- Mayr, A.; Weigelt, M.; Kühl, A.; Grimm, S.; Erll, A.; Potzel, M.; Franke, J. Lean 4.0—A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP 2018, 72, 622–628. [Google Scholar] [CrossRef]
- Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; Martínez-Jurado, P.J. Information and digital technologies of Industry 4.0 and Lean supply chain management: A systematic literature review. Int. J. Prod. Res. 2020, 58, 16. [Google Scholar] [CrossRef]
- Liao, Y.; Deschamps, F.; Loures, E.d.R.; Ramos, L.F.P. Past, present and future of Industry 4.0—A systematic literature review and research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Rahman, M.N.A.; Saibani, N.; Arsad, N.; Saadat, W. RFID impacts on barriers affecting lean manufacturing. Ind. Manag. Data Syst. 2016, 116, 8. [Google Scholar] [CrossRef]
- Ilangakoon, T.; Weerabahu, S.; Wickramarachchi, R. Combining Industry 4.0 with Lean Healthcare to Optimize Operational Performance of Sri Lankan Healthcare Industry. In Proceedings of the 2018 International Conference on Production and Operations Management Society (POMS), Peradeniya, Sri Lanka, 14–16 December 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Boudella, M.E.A.; Sahin, E.; Dallery, Y. Kitting optimisation in Just-in-Time mixed-model assembly lines: Assigning parts to pickers in a hybrid robot–operator kitting system. Int. J. Prod. Res. 2018, 56, 16. [Google Scholar] [CrossRef]
- Tortorella, G.; Miorando, R.; Caiado, R.; Nascimento, D.; Staudacher, A.P. The mediating effect of employees’ involvement on the relationship between Industry 4.0 and operational performance improvement. Total Qual. Manag. Bus. Excell. 2021, 32, 1–2. [Google Scholar] [CrossRef]
- Konanahalli, A.; Marinelli, M.; Oyedele, L. Drivers and Challenges Associated With the Implementation of Big Data Within U.K. Facilities Management Sector: An Exploratory Factor Analysis Approach. IEEE Trans. Eng. Manag. 2020, 69, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rossini, M.; Costa, F.; Tortorella, G.L.; Valvo, A.; Portioli-Staudacher, A. Lean Production and Industry 4.0 integration: How Lean Automation is emerging in manufacturing industry. Int. J. Prod. Res. 2021, 1–21. [Google Scholar] [CrossRef]
- Jayaram, A. Lean six sigma approach for global supply chain management using industry 4.0 and IIoT. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 89–94. [Google Scholar] [CrossRef]
- Salah, S.; Rahim, A.; Carretero, J.A. The integration of Six Sigma and lean management. Int. J. Lean Six Sigma 2010, 1, 249–274. [Google Scholar] [CrossRef]
- Saabye, H.; Kristensen, T.B.; Wæhrens, B.V. Real-time data utilization barriers to improving production performance: An in-depth case study linking lean management and industry 4.0 from a learning organization perspective. Sustainability 2020, 12, 8757. [Google Scholar] [CrossRef]
- Shamim, S.; Cang, S.; Yu, H.; Li, Y. Examining the feasibilities of Industry 4.0 for the hospitality sector with the lens of management practice. Energies 2017, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Parra, B.B.; Cerra, P.P.; Peñín, P.I.Á. Combining ERP, Lean Philosophy and ICT: An Industry 4.0 Approach in an SME in the Manufacturing Sector in Spain. Eng. Manag. J. 2021, 1–16. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M. Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. J. Manuf. Technol. Manag. 2020, 31, 1. [Google Scholar] [CrossRef]
- Reyes, J.; Mula, J.; Díaz-Madroñero, M. Development of a conceptual model for lean supply chain planning in industry 4.0: Multidimensional analysis for operations management. Prod. Plan. Control. 2021, 1–16. [Google Scholar] [CrossRef]
- Ciliberto, C.; Szopik-Depczyńska, K.; Tarczyńska-Łuniewska, M.; Ruggieri, A.; Ioppolo, G. Enabling the Circular Economy transition: A sustainable lean manufacturing recipe for Industry 4.0. Bus. Strategy Environ. 2021, 30, 3255–3272. [Google Scholar] [CrossRef]
- LaSelle, R. Automating sterile supply departments protects patients. A robotics company specializing in medical applications suggests that hospitals can benefit from lessons learned in lean manufacturing. Health Manag. Technol. 2011, 32, 22–23. [Google Scholar] [PubMed]
- Raut, R.D.; Mangla, S.K.; Narwane, V.S.; Dora, M.; Liu, M. Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains. Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102170. [Google Scholar] [CrossRef]
- Kühnle, H.; Bitsch, G. Smart Manufacturing Units. In Foundations & Principles of Distributed Manufacturing; Springer Series in Advanced Manufacturing; Springer International Publishing: Cham, Switzerland, 2015; pp. 55–70. [Google Scholar] [CrossRef]
- Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. Smart manufacturing: Characteristics, technologies and enabling factors. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1342–1361. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Q.; Zhao, Z. SLAE–CPS: Smart lean automation engine enabled by cyber-physical systems technologies. Sensors 2017, 17, 1500. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; McFarlane, D.; Hawkridge, G. Review and Classification of Digital Manufacturing Reference Architectures. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future; Springer Nature: Cham, Switzerland, 2022; pp. 231–247. [Google Scholar] [CrossRef]
- Ghobadian, A.; Talavera, I.; Bhattacharya, A.; Kumar, V.; Garza-Reyes, J.A.; O’Regan, N. Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. Int. J. Prod. Econ. 2020, 219, 457–468. [Google Scholar] [CrossRef]
- Chen, K.M.; Chen, J.C.; Cox, R.A. Real time facility performance monitoring system using RFID technology. Assem. Autom. 2012, 32, 185–196. [Google Scholar] [CrossRef]
- Lyu, J.J.; Chen, P.S.; Huang, W.T. Combining an automatic material handling system with lean production to improve outgoing quality assurance in a semiconductor foundry. Prod. Plan. Control 2021, 32, 10. [Google Scholar] [CrossRef]
- Sanders, A.; Elangeswaran, C.; Wulfsberg, J. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. J. Ind. Eng. Manag. 2016, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Uriarte, A.G.; Ng, A.H.C.; Moris, M.U. Bringing together Lean and simulation: A comprehensive review. Int. J. Prod. Res. 2020, 58, 87–117. [Google Scholar] [CrossRef] [Green Version]
- Erkayman, B. Transition to a JIT production system through ERP implementation: A case from the automotive industry. Int. J. Prod. Res. 2019, 57, 17. [Google Scholar] [CrossRef]
- Southard, P.B.; Chandra, C.; Kumar, S. RFID in healthcare: A Six Sigma DMAIC and simulation case study. Int. J. Health Care Qual. Assur. 2012, 25, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, C.; Mendes, L. IT in lean-based manufacturing industries: Systematic literature review and research issues. Int. J. Prod. Res. 2017, 55, 7524–7540. [Google Scholar] [CrossRef]
- R, V.; Vinodh, S. Development of a structural model based on ISM for analysis of barriers to integration of leanwith industry 4.0. TQM J. 2021, 33, 6. [Google Scholar] [CrossRef]
- Buer, S.V.; Strandhagen, J.O.; Chan, F.T.S. The link between industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 2018, 56, 8. [Google Scholar] [CrossRef] [Green Version]
- Ilangakoon, T.S.; Weerabahu, S.K.; Samaranayake, P.; Wickramarachchi, R. Adoption of Industry 4.0 and lean concepts in hospitals for healthcare operational performance improvement. Int. J. Product. Perform. Manag. 2021, 71, 2188–2213. [Google Scholar] [CrossRef]
- Molema, J.J.W.; Groothuis, S.; Baars, I.J.; Kleinschiphorst, M.; Leers, E.G.E.; Hasman, A.; van Merode, G.G. Healthcare system design and parttime working doctors. Health Care Manag. Sci. 2007, 10, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Sony, M.; Antony, J.; Dermott, O.M.; Garza-Reyes, J.A. An empirical examination of benefits, challenges, and critical success factors of industry 4.0 in manufacturing and service sector. Technol. Soc. 2021, 67, 101754. [Google Scholar] [CrossRef]
- Sony, M. Industry 4.0 and lean management: A proposed integration model and research propositions. Prod. Manuf. Res. 2018, 6, 416–432. [Google Scholar] [CrossRef] [Green Version]
- Kolla, S.; Minufekr, M.; Plapper, P. Deriving essential components of lean and industry 4.0 assessment model for manufacturing SMEs. Procedia CIRP 2019, 81, 753–758. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Perno, M.; Hvam, L.; Haug, A. Implementation of digital twins in the process industry: A systematic literature review of enablers and barriers. Comput. Ind. 2022, 134, 103558. [Google Scholar] [CrossRef]
- Dorval, M.; Jobin, M.-H. Exploring lean generic and lean healthcare cultural clusters. Int. J. Product. Perform. Manag. 2019, 69, 723–740. [Google Scholar] [CrossRef]
- Schönfuß, B.; McFarlane, D.; Hawkridge, G.; Salter, L.; Athanassopoulou, N.; de Silva, L. A catalogue of digital solution areas for prioritising the needs of manufacturing SMEs. Comput. Ind. 2021, 133, 103532. [Google Scholar] [CrossRef]
- Eifert, T.; Eisen, K.; Maiwald, M.; Herwig, C. Current and future requirements to industrial analytical infrastructure—Part 2: Smart sensors. Anal. Bioanal. Chem. 2020, 412, 2037–2045. [Google Scholar] [CrossRef] [Green Version]
- Belhadi, A.; Kamble, S.S.; Gunasekaran, A.; Zkik, K.; M, D.K.; Touriki, F.E. A Big Data Analytics-driven Lean Six Sigma framework for enhanced green performance: A case study of chemical company. Prod. Plan. Control 2021. [Google Scholar] [CrossRef]
- Hawkridge, G.; Mukherjee, A.; McFarlane, D.; Tlegenov, Y.; Parlikad, A.K.; Reyner, N.J.; Thorne, A. Monitoring on a shoestring: Low cost solutions for digital manufacturing. Annu. Rev. Control 2021, 51, 374–391. [Google Scholar] [CrossRef]
- Hawkridge, G.; McFarlane, D.; Kaiser, J.; de Silva, L.; Terrazas, G. Designing Shoestring Solutions: An Approach for Designing Low-Cost Digital Solutions for Manufacturing. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future; Springer Nature: Cham, Switzerland, 2022; pp. 249–262. [Google Scholar] [CrossRef]
- Chen, J.C.; Cheng, C.-H.; Huang, P.B. Supply chain management with lean production and RFID application: A case study. Expert Syst. Appl. 2013, 40, 3389–3397. [Google Scholar] [CrossRef]
- Vlachos, I.P.; Pascazzi, R.M.; Zobolas, G.; Repoussis, P.; Giannakis, M. Lean manufacturing systems in the area of Industry 4.0: A lean automation plan of AGVs/IoT integration. Prod. Plan. Control 2021, 1–14. [Google Scholar] [CrossRef]
Authors | Description | Year | Article Citations |
---|---|---|---|
[5] | Industry 4.0, or the fourth stage of industrialisation, is a technological evolution in the manufacturing domain enabled by cyber-physical systems (CPSs) and the Internet of Things and Services. | 2013 | 3825 |
[24] | “Industry 4.0 collectively refers to a wide range of current concepts, whose clear classification concerning a discipline as well as their precise distinction is not possible in individual cases. […] Fundamental concepts are: Smart Factory, Cyber-physical systems, self-organization, new systems in distribution and procurement, adaptation to human needs, and corporate social responsibility”. | 2014 | 3806 |
[20] | “The term Industry 4.0 refers to the fourth industrial revolution and is often understood as the application of the generic concept of cyber-physical systems (CPSs) to industrial production systems (cyber-physical production systems).” | 2015 | 139 |
[19] | Industry 4.0 is based on the principles of interconnection (i.e., a collaboration between physical objects and humans), information transparency (i.e., availability of digital data of the physical world and their exploitation using analytics), decentralised decisions (enabled by CPSs), and technical assistance. | 2017 | 708 |
[25] | “I4.0 is aimed at creating intelligent factories where manufacturing technologies are upgraded and transformed by Cyber-physical systems (CPSs), Internet of Things (IoT), and cloud computing”. | 2017 | 1728 |
[26] | “Industry 4.0 represents the current trend of automation technologies in the manufacturing industry, and it mainly includes enabling technologies such as the cyber-physical systems (CPSs), Internet of Things (IoT) and cloud computing”. | 2018 | 1990 |
Characteristics | Keywords |
---|---|
Industry 4.0 | TITLE (“Industry 4.0” OR “the fourth industrial revolution” OR “I4.0” OR “Lean 4.0” OR “Smart manufacturing” OR “Smart maintenance” OR “Smart factory” OR “Cyber physical systems” OR “CPS” OR “Big Data” OR “automation” OR “RFID” OR “Cloud” OR “Simulation” OR “Artificial intelligence” OR “AI” OR “Internet of Things” OR “IoT” OR “IIoT” OR “Digital Twin” OR “Blockchain” OR “Robotic” OR “Autonomous systems” OR “System integration” OR “Cybersecurity” OR “Additive manufacturing” OR “3D printing” OR “Augmented Reality” OR “Manufacturing 4.0” OR “Quality 4.0” OR “Supply chain management 4.0” OR “SCM 4.0” OR “Data science” OR “Data analytics” OR “Data mining” OR “Data warehouse” OR “Predictive” OR “Digital transformation” OR “Logistics 4.0”). |
Lean Six Sigma | TITLE (“Lean” OR “six sigma” OR “lean six sigma” OR “lean manufacturing” OR “lean tools” OR “lean practices” OR “5S” OR “SMED” OR “TPM” OR “VSM” OR “Just in time” OR “JIT” OR “poka yoke” OR “heijunka” OR “andon” OR “one piece flow” OR “kanban” OR “SPC” OR “visual management” OR “Lean distribution” OR “Lean warehousing” OR “Lean transportation” OR “Lean logistics” OR “Lean SCM”). |
Additional terms | TITLE-ABS-KEY (“Integration” OR “Barrier” OR “Driver” OR “Enabler” OR “Success factor” OR “Benefits”). |
Category | Integration Enablers | Articles Considering the Enabler (%) |
---|---|---|
Collaborative culture | Involvement of employees and other stakeholders | 22% |
Top management support and commitment | 18% | |
Availability and openness of company staff | 4% | |
Strategic orientation | Investment in staff training | 27% |
Investment in IT infrastructure | 16% | |
Integration of implementation approach with the business strategy | 8% | |
Mature understanding of I4.0 and Lean Six Sigma | 4% | |
High level of company maturity in the use of I4.0 and L | 3% | |
Availability of implementation patterns for integration | 1% | |
Efficient operations | Simplified processes | 5% |
Standardised processes | 4% | |
External stakeholders’ support | Regulations for the protection and security of company data | 4% |
Subsidies and seed funding | 1% | |
Interconnected IT systems | Interoperability of IT systems | 14% |
Availability of reference architecture models | 3% | |
Flexibility of IT systems | 1% | |
Timely and accurate data availability | 1% |
I4.0 Enabling Technologies | (%) | |
---|---|---|
Big Data | 51% | |
Internet of Things (IoT) | 43% | |
Cloud Computing Systems | 35% | |
Radio-Frequency Identification (RFID) | 35% | |
Digital twin/Simulation/CAD/BIM | 27% | |
Robots/Automation | 19% | |
Enterprise Resource Planning (ERP) | 19% | |
Augmented Reality (AR) | 18% | |
Digital Autonomation/Sensors | 15% | |
Artificial Intelligence (AI) | 9% | |
Virtual Reality (VR) | 7% | |
Blockchain | 1% | |
Wireless Sensor Networks (WSNs) | 1% |
Category | Integration Barriers | Articles Considering the Enabler (%) |
---|---|---|
Cultural suitability | Resistance to change | 8% |
Insufficient management support | 5% | |
Short-term vision of company goals | 4% | |
Insufficient organisational communication | 1% | |
Low employee involvement | 1% | |
Financial plausibility | High implementation costs | 28% |
Lack of awareness of potential benefits | 4% | |
Long implementation time | 4% | |
Operational viability | Long learning curve | 16% |
Poorly structured, non-standardised processes | 8% | |
Insufficient data privacy/security | 8% | |
Data loss issues | 8% | |
Low level of experience and skills in LSS/I4.0 | 7% | |
Significant changes in production processes | 4% | |
Workforce instability | 1% | |
Technological feasibility | Technology incompatibility | 18% |
Insufficient IT design and infrastructure | 9% | |
Matching and integration between different data sources | 8% | |
Massive volume of data to be managed | 3% | |
Lack of common communication protocols | 3% |
I4.0 Technologies | (%) | |
---|---|---|
Just-in-Time (JIT) | 49% | |
Value-Stream Mapping (VSM) | 39% | |
Kanban | 31% | |
Total Productive Maintenance (TPM) | 30% | |
Flow Continuous | 24% | |
Low Setup | 24% | |
Pull | 20% | |
Involved Customers | 20% | |
Kaizen/Continuous Improvement | 20% | |
Poka-Yoke | 20% | |
Statistical Process Control (SPC) | 19% | |
5S | 19% | |
Developing Suppliers | 18% | |
Involved Employees | 15% | |
Jidoka | 15% | |
Andon | 14% | |
Define–Measure–Analyse–Improve–Control (DMAIC) | 14% | |
Heijunka | 12% | |
Supplier Feedback | 11% | |
Total Quality Management (TQM) | 9% | |
Visual management | 9% | |
Failure Modes Effect Analysis (FMEA) | 7% | |
5 Whys | 5% | |
Human Resource Management (HRM) | 4% | |
Controlled processes | 4% | |
Design of Experiments (DOE) | 4% | |
Critical to Quality (CTQ) | 4% | |
Plan–Do–Check–Act –PDCA) | 4% | |
Cellular Manufacturing | 4% | |
Constant Work in Process (CONWIP) | 1% | |
Suppliers–Inputs–Process–Outputs–Customers (SIPOC) | 1% | |
Quality Function Deployment (QFD) | 1% | |
Gemba | 1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macias-Aguayo, J.; Garcia-Castro, L.; Barcia, K.F.; McFarlane, D.; Abad-Moran, J. Industry 4.0 and Lean Six Sigma Integration: A Systematic Review of Barriers and Enablers. Appl. Sci. 2022, 12, 11321. https://doi.org/10.3390/app122211321
Macias-Aguayo J, Garcia-Castro L, Barcia KF, McFarlane D, Abad-Moran J. Industry 4.0 and Lean Six Sigma Integration: A Systematic Review of Barriers and Enablers. Applied Sciences. 2022; 12(22):11321. https://doi.org/10.3390/app122211321
Chicago/Turabian StyleMacias-Aguayo, Jaime, Lizzi Garcia-Castro, Kleber F. Barcia, Duncan McFarlane, and Jorge Abad-Moran. 2022. "Industry 4.0 and Lean Six Sigma Integration: A Systematic Review of Barriers and Enablers" Applied Sciences 12, no. 22: 11321. https://doi.org/10.3390/app122211321
APA StyleMacias-Aguayo, J., Garcia-Castro, L., Barcia, K. F., McFarlane, D., & Abad-Moran, J. (2022). Industry 4.0 and Lean Six Sigma Integration: A Systematic Review of Barriers and Enablers. Applied Sciences, 12(22), 11321. https://doi.org/10.3390/app122211321