Research and Conceptual Design of Sensor Fusion for Object Detection in Dense Smoke Environments
Abstract
:1. Introduction
2. Theoretical Methodology for Object Detection Using Ultrasonic Sensors, FMCW Radar, and Thermal IR Camera
2.1. Principle of 3D Position Measurement Using Ultrasonic Sensors: 3D Ultrasonic Sensor Module
2.1.1. Eliminate Measurement Errors Due to Temperature Changes
2.1.2. Extension of Directional Angle of View and Detection Area: 3D Ultrasonic Sensor System
2.2. Thermal IR Image Processing: Object Detection
- ①
- The maximum number of edges can be detected.
- ②
- It gives very good results for detecting horizontal and vertical edges.
- ③
- Circular and corner edges can be detected.
- ④
- Good localization.
- ⑤
- Only one response to a single edge.
2.3. Principle of 2D Radial Position Measurement Using FMCW Radar
2.3.1. Range Measurement for an Object Target
2.3.2. Angle Measurement
2.4. Data Fusion
2.4.1. Overview
2.4.2. Calibration between Thermal IR Camera and 3D Ultrasonic Sensor System or FMCW Radar System
3. Conceptual Design Based on the Theoretical Methodology
4. Future Research Directions and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- National Fire Agency. 2022 National Fire Agency Statistical Yearbook in Korea; National Fire Agency: Seoul, Korea, 2022.
- National Fire Agency. 2021 Fire Statistical Yearbook in Korea; National Fire Agency: Seoul, Korea, 2022.
- Fahy, R.F.; Petrillo, J.T.; Molis, J.L. Firefighter Fatalities in the US—2019; NFPA Research; NFPA: Quincy, MA, USA, July 2020. [Google Scholar]
- Campbell, R.; Evarts, B. United States Firefighter Injuries in 2019; NFPA Research; NFPA: Quincy, MA, USA, November 2020. [Google Scholar]
- Ahrens, M.; Evarts, B. Fire Loss in the United States during 2019; NFPA Research; NFPA: Quincy, MA, USA, September 2020. [Google Scholar]
- Ronchi, E.; Gwynne, S.; Purser, D.; Colonna, P. Representation of the impact of smoke on agent walking speeds in evacuation models. Fire Technol. 2012, 49, 411–431. [Google Scholar] [CrossRef]
- Bryan, J.L. Behavioral response to fire and smoke. In SFPE Handbook of Fire Protection Engineering; SFPE: Washington, DC, USA, 2002; Volume 2. [Google Scholar]
- Wright, M.; Cook, G.; Webber, G. The effects of smoke on people’s walking Speeds using overhead lighting and Wayguidance provision. In Proceedings of the 2nd International Symposium on Human Behavior in Fire; MIT: Boston, MA, USA, 2001; pp. 275–284. [Google Scholar]
- Jin, T. Visibility through Fire Smoke Report (No. 42); Fire Research Institute of Japan: Tokyo, Japan, 1976. [Google Scholar]
- Chang, P.-H.; Park, K.-B.; Cho, G.-R.; Kim, J.-K.; Lee, W.-J. A Vision enhancement technique for remote control of fire fighting robots. In Proceedings of the 2007 KIFSE Fall Conference, Seoul, Korea, 15–16 July 2007; pp. 219–224. [Google Scholar]
- Li, S.; Feng, C.; Liang, X.; Qin, H.; Li, H.; Shi, L. A Guided Vehicle under Fire Conditions Based on a Modified Ultrasonic Obstacle Avoidance Technology. Sensors 2018, 18, 4366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Keller, B.; Lattimer, B.Y. Sensor fusion based seek-and-find fire algorithm for intelligent firefighting robot. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 9–12 July 2013; pp. 1482–1486. [Google Scholar]
- McNeil, J.G.; Starr, J.; Lattimer, B.Y. Autonomous Fire Suppression Using Multispectral Sensors. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 9–12 July 2013. [Google Scholar]
- Starr, J.W.; Lattimer, B.Y. Application of Thermal Infrared Stereo Vision in Fire Environments. In Proceedings of the 2013 EEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 9–12 July 2013. [Google Scholar]
- Starr, J.W.; Lattimer, B.Y. A comparison of IR stereo vision and LIDAR for use in fire environments. In Proceedings of the 2012 IEEE Sensors, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Khoon, T.N.; Sebastian, P.; Saman, A.B.S. Autonomous Fire Fighting Mobile Platform. Procedia Eng. 2012, 41, 1145–1153. [Google Scholar] [CrossRef]
- Liljeback, P.; Stavdahl, O.; Beitnes, A. SnakeFighter-development of a water hydraulic firefighting snake robot. In Proceedings of the 2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006; pp. 1–6. [Google Scholar]
- Hong, J.H.; Min, B.-C.; Taylor, J.M.; Raskin, V.; Matson, E.T. NL-based communication with firefighting robots. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 1461–1466. [Google Scholar]
- Tan, C.F.; Alkahari, M.; Rahman, A. Development of Ground Vehicle for Fire Fighting Purpose. In Proceedings of the Hari Penyelidikan, Malacca, Malaysia, 20 July 2011; pp. 78–81. [Google Scholar]
- Miyazawa, K. Fire robots developed by the Tokyo Fire Department. Adv. Robot. 2002, 16, 553–556. [Google Scholar] [CrossRef]
- Chang, P.H.; Kang, Y.H.; Cho, G.R.; Kim, J.H.; Jin, M.; Lee, J.; Jeong, J.H.; Han, D.K.; Jung, J.H.; Lee, W.-J.; et al. Control architecture design for a fire searching robot using task oriented design methodology. In Proceedings of the 2006 International Joint Conference on SICE-ICASE, Pusan, Korea, 18–21 October 2006; pp. 3126–3131. [Google Scholar]
- Kim, Y.D.; Kim, Y.G.; Lee, S.H.; Kang, J.H.; An, J. Portable fire evacuation guide robot system. In Proceedings of the 2009 IEEE/RSJ International Conference on IROS, St. Louis, MO, USA, 11–15 October 2009; pp. 2789–2794. [Google Scholar]
- Longo, D.; Muscato, G. CLAWAR WP3 Applications: Natural/Outdoor and Underwater Robots. In Climbing and Walking Robots: Proceeings of the 7th International Conference Clawar; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1159–1170. [Google Scholar]
- Penders, J.; Alboul, L.; Witkowski, U.; Naghsh, A.; Saez-Pons, J.; Herbrechtsmeier, S.; El-Habbal, M. A robot swarm assisting a human fire-fighter. Adv. Robot. 2011, 25, 93–117. [Google Scholar] [CrossRef] [Green Version]
- Bertram, C.; Evans, M.H.; Javaid, M.; Stafford, T.; Prescott, T. Sensory augmentation with distal touch: The tactile helmet project. In Proceedings of the Biomimetic and Biohybrid Systems. Second international conference, Living Machines, London, UK, 29 July–2 August 2013; pp. 24–35. [Google Scholar]
- Rutherford, P. Auditory Navigation and the Escape from Smoke Filled Buildings. In Proceedings of the CAAD Futures 1997, Munchen, Germany, 4–6 August 1997; pp. 299–304. [Google Scholar]
- Kim, J.-H.; Starr, J.W.; Lattimer, B.Y. Firefighting Robot Stereo Infrared Vision and Radar Sensor Fusion for Imaging through Fire Smoke. Fire Technol. 2015, 51, 823–845. [Google Scholar] [CrossRef]
- Cho, M.-Y.; Shin, D.-I.; Jun, S. A Sensor module overcoming thick smoke through investigation of fire characteristics. J. Korea Robot. Soc. 2018, 13, 237–247. [Google Scholar] [CrossRef]
- Starr, J.W.; Lattimer, B.Y. Evaluation of Navigation Sensors in Fire Smoke Environments. Fire Technol. 2014, 50, 1459–1481. [Google Scholar] [CrossRef]
- Hsu, C.-P.; Li, B.; Solano-Rivas, B.; Gohil, A.R.; Chan, P.H.; Moore, A.D.; Donzella, V. A Review and Perspective on Optical Phased Array for Automotive LiDAR. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–16. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, J.; Wang, R.; Liu, Z.; Ma, C.; Wang, Y.; Zhao, Y. Design of intelligent fire-fighting robot based on multi-sensor fusion and experimental study on fire scene patrol. Robot. Auton. Syst. 2022, 154, 104122. [Google Scholar] [CrossRef]
- Bankapur, K.; Mathur, H.; Singh, H.; Harikrishnan, R.; Gupta, A. A Flame Sensor-Based Firefighting Assistance Robot with Simulation Based Multi-Robot Implementation. In Proceedings of the 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 28–29 January 2022; pp. 1–8. [Google Scholar]
- Reitbauer, E.; Schmied, C.; Didari, H. Subterranean positioning for a semi-autonomous robot supporting emergency task forces. In Proceedings of the 2022 International Conference on Localization and GNSS, Tampere, Finland, 7–9 June 2022; pp. 1–7. [Google Scholar]
- Chen, S.; Liu, X.; Zhang, T.; Yi, M. Research and design of intelligent fire-fighting robot based on machine vision detection technology. In Proceedings of the International Conference on Intelligent Systems, Communications, and Computer Networks (ISCCN 2022), Chengdu, China, 17–19 June 2022; pp. 117–125. [Google Scholar]
- Yu, W.B.; Xiong, Z.J.; Dong, Z.Q.; Wang, S.Y.; Li, J.Y.; Liu, G.P.; Liu, A.X. Zero-Error Coding via Classical and Quantum Channels in Sensor Networks. Sensors 2019, 19, 5071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Wang, Y.; Jiang, Y.; Ji, H.; Wang, B.; Huang, Z. A New Positioning Method Based on Multiple Ultrasonic Sensors for Autonomous Mobile Robot. Sensors 2019, 20, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canny, J. A Computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Ushma, A.; Mohamed Shanavas, A.R. Object detection in image processing using edge detection techniques. IOSR J. Eng. 2014, 4, 10–13. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson Prentice Hall, International: Upper Saddle River, NJ, USA, 2018. [Google Scholar]
- Lowe, G. Sift-the scale invariant feature transform. Int. J. 2004, 2, 91–110. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Sungimoto, S.; Tateda, H.; Takahashi, H.; Okutomi, M. Obstacle detection using millimeter-wave radar and its visualization on image sequence. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 23–26 August 2004; pp. 342–345. [Google Scholar]
- Kim, D.Y.; Jeon, M. Data fusion of radar and image measurements for multi-object tracking via Kalman filtering. Inf. Sci. 2014, 278, 641–652. [Google Scholar] [CrossRef]
Studies | Used Sensors | Limitations | Advantages |
---|---|---|---|
[11] | Ultrasonic sensor |
|
|
[12,13] | Single thermal IR camera + Lidar + UV sensor + normal camera |
|
|
[14,15,21] | Stereo thermal IR camera |
|
|
[27] | Stereo thermal IR camera + Radar |
|
|
[28] | RGB camera + Radar + Stereo thermal IR camera |
|
|
Sensors | Category | Specification | # of Sensors Used |
---|---|---|---|
Ultrasonic sensor (Hargisonic, HG-M40) | Frequency (kHz) | 40 | 20 |
Input pulse | TTL or Pulse | ||
Output signal (V) | 5 | ||
Detection range (m) | 0.3~3 | ||
FMCW radar (Infineon, BGT24MTR12) | Field of View (degree) | 19 × 76 | 1 |
Carrier frequency (GHz) | 24 | ||
Bandwidth (MHz) | 200 | ||
Sweep time (μs) | 300 | ||
Max. IF (kHz) | 10 | ||
Detection range (m) | 3~10 | ||
Thermal IR camera (FLIR A35) | Focal plane (pixel) | 320 × 256 | 1 |
Pixel space (μm) | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, B. Research and Conceptual Design of Sensor Fusion for Object Detection in Dense Smoke Environments. Appl. Sci. 2022, 12, 11325. https://doi.org/10.3390/app122211325
Hahn B. Research and Conceptual Design of Sensor Fusion for Object Detection in Dense Smoke Environments. Applied Sciences. 2022; 12(22):11325. https://doi.org/10.3390/app122211325
Chicago/Turabian StyleHahn, Bongsu. 2022. "Research and Conceptual Design of Sensor Fusion for Object Detection in Dense Smoke Environments" Applied Sciences 12, no. 22: 11325. https://doi.org/10.3390/app122211325
APA StyleHahn, B. (2022). Research and Conceptual Design of Sensor Fusion for Object Detection in Dense Smoke Environments. Applied Sciences, 12(22), 11325. https://doi.org/10.3390/app122211325