Aerobic Upper-Limb Exercise-Induced Hypoalgesia: Does It Work?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement Tools
2.2.1. Quantitative Sensory Testing (QST)
2.2.2. Questionnaires
2.2.3. Exercise Intensity Measurements
2.2.4. Aerobic Exercise Protocols
2.3. Study Procedure
2.4. Data Analysis
3. Results
3.1. Comparison between the Protocols for Physiological Responses and Subjective Perception
3.2. Pain Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koltyn, K.F. Analgesia following exercise: A review. Sport. Med. 2000, 29, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Naugle, K.M.; Fillingim, R.B.; Riley, J.L., 3rd. A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 2012, 13, 1139–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasri-Heir, C.; Patil, A.G.; Korczeniewska, O.A.; Zusman, T.; Khan, J.; Heir, G.; Benoliel, R.; Eliav, E. The Effect of Nonstrenuous Aerobic Exercise in Patients with Chronic Masticatory Myalgia. J. Oral Facial Pain Headache 2019, 33, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, L.W.; Koltyn, K.F.; Morgan, W.P.; Cook, D.B. Influence of preferred versus prescribed exercise on pain in fibromyalgia. Med. Sci. Sport. Exerc. 2011, 43, 1106–1113. [Google Scholar] [CrossRef] [Green Version]
- Koltyn, K.F. Exercise-induced hypoalgesia and intensity of exercise. Sports Med. 2002, 32, 477–487. [Google Scholar] [CrossRef]
- Naugle, K.M.; Naugle, K.E.; Fillingim, R.B.; Samuels, B.; Riley, J.L., 3rd. Intensity thresholds for aerobic exercise-induced hypoalgesia. Med. Sci. Sport. Exerc. 2014, 46, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Barrios, K.; Carolyna Gianlorenco, A.; Machado, R.; Queiroga, M.; Zeng, H.; Shaikh, E.; Yang, Y.; Nogueira, B.; Castelo-Branco, L.; Fregni, F. Exercise-induced pain threshold modulation in healthy subjects: A systematic review and meta-analysis. Princ. Pract. Clin. Res. 2020, 6, 11–28. [Google Scholar] [CrossRef]
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-Induced Hypoalgesia in Pain-Free and Chronic Pain Populations: State of the Art and Future Directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef] [Green Version]
- Vaegter, H.B.; Fehrmann, E.; Gajsar, H.; Kreddig, N. Endogenous Modulation of Pain: The Role of Exercise, Stress, and Cognitions in Humans. Clin. J. Pain 2020, 36, 150–161. [Google Scholar] [CrossRef]
- Kesiktas, F.N.; Kasikcioglu, E.; Paker, N.; Bayraktar, B.; Karan, A.; Ketenci, A.; Muslumanoglu, L. Comparison of the functional and cardiovascular effects of home-based versus supervised hospital circuit training exercises in male wheelchair users with chronic paraplegia. Turk. J. Phys. Med. Rehabil. 2021, 67, 275–282. [Google Scholar] [CrossRef]
- Christensen, J.; Tang, L.; Doherty, P.; Langhorn, C.; Langberg, H. Test-retest reliability of a maximal arm cycle exercise test for younger individuals with traumatic lower limb amputations. Eur. J. Physiother. 2020, 22, 115–120. [Google Scholar] [CrossRef]
- Olausson, B.; Eriksson, E.; Ellmarker, L.; Rydenhag, B.; Shyu, B.C.; Andersson, S.A. Effects of naloxone on dental pain threshold following muscle exercise and low frequency transcutaneous nerve stimulation: A comparative study in man. Acta Physiol. Scand. 1986, 126, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Staud, R.; Robinson, M.E.; Weyl, E.E.; Price, D.D. Pain variability in fibromyalgia is related to activity and rest: Role of peripheral tissue impulse input. J. Pain 2010, 11, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Naert, A.L.G.; Kehlet, H.; Kupers, R. Characterization of a novel model of tonic heat pain stimulation in healthy volunteers. Pain 2008, 138, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Orr, J.L.; Williamson, P.; Anderson, W.; Ross, R.; McCafferty, S.; Fettes, P. Cardiopulmonary exercise testing: Arm crank vs cycle ergometry. Anaesthesia 2013, 68, 497–501. [Google Scholar] [CrossRef]
- Keyser, R.E.; Mor, D.; Andres, F.F. Cardiovascular responses and anaerobic threshold for bicycle and arm ergometer exercise. Arch. Phys. Med. Rehabil. 1989, 70, 687–691. [Google Scholar]
- Bhambhani, Y.; Maikala, R.; Buckley, S. Muscle oxygenation during incremental arm and leg exercise in men and women. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 422–431. [Google Scholar] [CrossRef]
- Borg, G.; Hassmen, P.; Lagerstrom, M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 679–685. [Google Scholar] [CrossRef]
- Hill, M.; Puddiford, M.; Talbot, C.; Price, M. The validity and reproducibility of perceptually regulated exercise responses during combined arm + leg cycling. Eur. J. Appl. Physiol. 2020, 120, 2203–2212. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Fox, S.M., 3rd; Naughton, J.P. Physical activity and the prevention of coronary heart disease. Prev. Med. 1972, 1, 92–120. [Google Scholar] [CrossRef]
- Hill, M.; Talbot, C.; Price, M. Predicted maximal heart rate for upper body exercise testing. Clin. Physiol. Funct. Imaging 2016, 36, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Kodesh, E.; Weissman-Fogel, I. Exercise-induced hypoalgesia - interval versus continuous mode. Appl. Physiol. Nutr. Metab. 2014, 39, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Yarnitsky, D. Quantitative sensory testing. Muscle Nerve 1997, 20, 198–204. [Google Scholar] [CrossRef]
- Tousignant-Laflamme, Y.; Page, S.; Goffaux, P.; Marchand, S. An experimental model to measure excitatory and inhibitory pain mechanisms in humans. Brain Res. 2008, 1230, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J. Qualified Fitness and Exercise as Professionals and Exercise Prescription: Evolution of the PAR-Q and Canadian Aerobic Fitness Test. J. Phys. Act. Health 2015, 12, 454–461. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Fogelholm, M.; Malmberg, J.; Suni, J.; Santtila, M.; Kyrolainen, H.; Mantysaari, M.; Oja, P. International Physical Activity Questionnaire: Validity against fitness. Med. Sci. Sport. Exerc. 2006, 38, 753–760. [Google Scholar] [CrossRef]
- Weissblueth, E. Short Hebrew International Physical Activity Questionnaire: Reliability and Validity. Balt. J. Health Phys. Act. 2015, 7, 7–13. [Google Scholar] [CrossRef]
- Noble, B.J.; Borg, G.A.; Jacobs, I.; Ceci, R.; Kaiser, P. A category-ratio perceived exertion scale: Relationship to blood and muscle lactates and heart rate. Med. Sci. Sport. Exerc. 1983, 15, 523–528. [Google Scholar] [CrossRef]
- Tesch, P.A.; Daniels, W.L.; Sharp, D.S. Lactate accumulation in muscle and blood during submaximal exercise. Acta Physiol. Scand. 1982, 114, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D. The Complete Book of Personal Training; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Hoffman, M.D.; Shepanski, M.A.; Ruble, S.B.; Valic, Z.; Buckwalter, J.B.; Clifford, P.S. Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Arch. Phys. Med. Rehabil. 2004, 85, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Micalos, P.S.; Arendt-Nielsen, L. Differential pain response at local and remote muscle sites following aerobic cycling exercise at mild and moderate intensity. Springerplus 2016, 5, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, A.; Wallat, D.; Stangier, C.; Martin, J.A.; Schlesinger-Irsch, U.; Boecker, H. Effects of fitness level and exercise intensity on pain and mood responses. Eur. J. Pain 2020, 24, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Chen, C.; Yang, S.; Wang, X. Aerobic Exercise Attenuates Pain Sensitivity: An Event-Related Potential Study. Front. Neurosci. 2021, 15, 735470. [Google Scholar] [CrossRef] [PubMed]
- Schrieks, I.C.; Barnes, M.J.; Hodges, L.D. Comparison study of treadmill versus arm ergometry. Clin. Physiol. Funct. Imaging 2011, 31, 326–331. [Google Scholar] [CrossRef]
- Ge, H.Y.; Nie, H.; Graven-Nielsen, T.; Danneskiold-Samsoe, B.; Arendt-Nielsen, L. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia. Eur. J. Pain 2012, 16, 196–203. [Google Scholar] [CrossRef]
- Lanefelt, S.V.; Melo-Gomez, M.; Chizari, M.; Krsek, M.; Christidis, N.; Kosek, E.; Ernberg, M. Tooth Clenching Until Exhaustion Evokes Exercise-Induced Hypoalgesia in Healthy Persons and in Patients with Temporomandibular Disorders. J. Oral Facial Pain Headache 2019, 33, 14–24. [Google Scholar] [CrossRef]
- Kuppens, K.; Struyf, F.; Nijs, J.; Cras, P.; Fransen, E.; Hermans, L.; Meeus, M.; Roussel, N. Exercise-and stress-induced hypoalgesia in musicians with and without shoulder pain: A randomized controlled crossover study. Pain Physician 2016, 19, 59–68. [Google Scholar]
- Kosek, E.; Lundberg, L. Segmental and plurisegmental modulation of pressure pain thresholds during static muscle contractions in healthy individuals. Eur. J. Pain 2003, 7, 251–258. [Google Scholar] [CrossRef]
- Wassinger, C.A.; Lumpkins, L.; Sole, G. Lower Extremity Aerobic Exercise as a Treatment for Shoulder Pain. Int. J. Sport. Phys. Ther. 2020, 15, 74–80. [Google Scholar] [CrossRef]
- Vaegter, H.B.; Handberg, G.; Graven-Nielsen, T. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans. Pain 2014, 155, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, H.B.; Bjerregaard, L.K.; Redin, M.M.; Rasmussen, S.H.; Graven-Nielsen, T. Hypoalgesia after bicycling at lactate threshold is reliable between sessions. Eur. J. Appl. Physiol. 2019, 119, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltyn, K.F.; Garvin, A.W.; Gardiner, R.L.; Nelson, T.F. Perception of pain following aerobic exercise. Med. Sci. Sport. Exerc. 1996, 28, 1418–1421. [Google Scholar] [CrossRef]
- Gomolka, S.; Vaegter, H.B.; Nijs, J.; Meeus, M.; Gajsar, H.; Hasenbring, M.I.; Titze, C. Assessing Endogenous Pain Inhibition: Test-Retest Reliability of Exercise-Induced Hypoalgesia in Local and Remote Body Parts After Aerobic Cycling. Pain Med. 2019, 20, 2272–2282. [Google Scholar] [CrossRef]
- Da Silva Santos, R.; Galdino, G. Endogenous systems involved in exercise-induced analgesia. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2018, 69, 3–13. [Google Scholar]
- Hackney, A.C. Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Rev. Endocrinol. Metab. 2006, 1, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Nijs, J.; Kosek, E.; Van Oosterwijck, J.; Meeus, M. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: To exercise or not to exercise? Pain Physician 2012, 15, ES205–ES213. [Google Scholar] [CrossRef] [PubMed]
- Maresh, C.M.; Sokmen, B.; Kraemer, W.J.; Hoffman, J.R.; Watson, G.; Judelson, D.A.; Gabaree-Boulant, C.L.; Deschenes, M.R.; Vanheest, J.L.; Armstrong, L.E. Pituitary-adrenal responses to arm versus leg exercise in untrained man. Eur. J. Appl. Physiol. 2006, 97, 471–477. [Google Scholar] [CrossRef]
- Goldfarb, A.H.; Hatfield, B.D.; Potts, J.; Armstrong, D. Beta-endorphin time course response to intensity of exercise: Effect of training status. Int. J. Sport. Med. 1991, 12, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Koltyn, K.F.; Umeda, M. Exercise, hypoalgesia and blood pressure. Sport. Med. 2006, 36, 207–214. [Google Scholar] [CrossRef]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Song, J.S.; Spitz, R.W.; Yamada, Y.; Bell, Z.W.; Wong, V.; Abe, T.; Loenneke, J.P. Exercise-induced hypoalgesia and pain reduction following blood flow restriction: A brief review. Phys. Ther. Sport 2021, 50, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Shakerian, S.; Goomar, M.; Nikbakht, M. Comparison of Submaximal aerobic exercise effects in different intensities on heart rate and oxygen consumption during arm and leg exercise. Ann. Biol. Res. 2012, 3, 3287–3291. [Google Scholar]
- Wewege, M.A.; Jones, M.D. Exercise-induced hypoalgesia in healthy individuals and people with chronic musculoskeletal pain: A systematic review and meta-analysis. J. Pain 2021, 22, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, H.B.; Dørge, D.B.; Schmidt, K.S.; Jensen, A.H.; Graven-Nielsen, T. Test-retest reliabilty of exercise-induced hypoalgesia after aerobic exercise. Pain Med. 2018, 19, 2212–2222. [Google Scholar] [CrossRef] [Green Version]
- Moloney, N.A.; Hall, T.M.; Doody, C.M. Reliability of thermal quantitative sensory testing: A systematic review. J. Rehabil. Res. Dev. 2012, 49, 191. [Google Scholar] [CrossRef]
- Vaegter, H.; Hoeger Bement, M.; Madsen, A.; Fridriksson, J.; Dasa, M.; Graven-Nielsen, T. Exercise increases pressure pain tolerance but not pressure and heat pain thresholds in healthy young men. Eur. J. Pain 2017, 21, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Ruble, S.B.; Hoffman, M.D.; Shepanski, M.A.; Valic, Z.; Buckwalter, J.B.; Clifford, P.S. Thermal pain perception after aerobic exercise. Arch. Phys. Med. Rehabil. 2005, 86, 1019–1023. [Google Scholar] [CrossRef]
- Samuelly-Leichtag, G.; Kodesh, E.; Meckel, Y.; Weissman-Fogel, I. A fast track to hypoalgesia–the anaerobic exercise effect on pain sensitivity. Int. J. Sport. Med. 2018, 39, 473–481. [Google Scholar] [CrossRef]
- Naugle, K.M.; Naugle, K.E.; Riley, J.L., III. Reduced modulation of pain in older adults after isometric and aerobic exercise. J. Pain 2016, 17, 719–728. [Google Scholar] [CrossRef] [PubMed]
Variables | BORG Protocol Mean ± SD | THR Protocol Mean (SD) | p-Value |
---|---|---|---|
HR (bpm) | 122.6 ± 19.5 | 132.9 ± 9.8 | 0.002 |
RPE (0–10 scale) | 7.00 ± 0.1 | 6.6 ± 1.5 | 0.39 |
Power (watt) | 48.6 ± 15.4 | 52.6 ± 17.9 | 0.03 |
Δ Lactate (mmol) | 2.7 ± 0.42 | 3.3 ± 0.39 | 0.33 |
Exercise enjoyment (1–10 scale) | 6.1 ± 2.0 | 5.8 ± 2.3 | 0.48 |
Fatigue (1–10) | 4.9 ± 2.1 | 5.8 ± 2.5 | 0.17 |
THR Protocol | BORG Protocol | |||||
---|---|---|---|---|---|---|
Variables | Rest | Exercise | Rest | Exercise | ||
BL Mean (SD) | Pre Mean (SD) | Post Mean (SD) | BL Mean (SD) | Pre Mean (SD) | Post Mean (SD) | |
PPT (kPa) | 369.85 (126.56) | 363.58 (128.63) | 371.95 (134.09) | 372.75 (112.23) | 362.83 (115.31) | 374.77 (121.58) |
HPT (°C) | 47.21 (2.69) | 46.98 (2.70) | 46.94 (2.87) | 47.47 (2.22) | 47.36 (2.31) | 47.23 (2.66) |
THP (NPS) | 55.22 (23.29) | 55.05 (24.60) | 52.81 (24.58) | 56.83 (18.9) | 57.10 (21.71) | 52.99 (23.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katz-Betzalel, N.; Weissman-Fogel, I.; Kodesh, E. Aerobic Upper-Limb Exercise-Induced Hypoalgesia: Does It Work? Appl. Sci. 2022, 12, 11391. https://doi.org/10.3390/app122211391
Katz-Betzalel N, Weissman-Fogel I, Kodesh E. Aerobic Upper-Limb Exercise-Induced Hypoalgesia: Does It Work? Applied Sciences. 2022; 12(22):11391. https://doi.org/10.3390/app122211391
Chicago/Turabian StyleKatz-Betzalel, Noa, Irit Weissman-Fogel, and Einat Kodesh. 2022. "Aerobic Upper-Limb Exercise-Induced Hypoalgesia: Does It Work?" Applied Sciences 12, no. 22: 11391. https://doi.org/10.3390/app122211391
APA StyleKatz-Betzalel, N., Weissman-Fogel, I., & Kodesh, E. (2022). Aerobic Upper-Limb Exercise-Induced Hypoalgesia: Does It Work? Applied Sciences, 12(22), 11391. https://doi.org/10.3390/app122211391