Effect of Residual Stress in Surface Layer on Plastic Yield Inception
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
- Both the material of substrate and the surface layer are homogeneous.
- The surface layer and the substrate are perfectly bonded.
3. Results
3.1. Effect of Residual Stress on the Critical Yield Load and Contact Area
3.2. Effect of Residual Stress on the Locations of Yield Inception
4. Discussion
4.1. Discussion on Effect of Residual Stress on the Critical Yield Load
4.2. Effect of Surface Layer Thickness
4.3. Experimental Evidence
5. Conclusions
- (1)
- The residual stress in the surface layer has little influence on the stress field in the substrate during contact. The residual stress mainly influences the normal stress in the plane parallel to the contact surface and only has a minor influence on the other stress components in the surface layer. The influence of the residual stress on the critical yield load is mainly due to variations in the stress field in surface layer.
- (2)
- For all the surface layer thicknesses, as the dimensionless residual stress () varies from −1 to 1, the critical yield load increases firstly to a peak value or is leveled to a plateau value, and subsequently decreases. Generally, a moderate compressive residual stress in the surface layer results in higher critical yield load than that without residual stress or with tensile residual stress. An optimal value of −0.6 is found to maximize the critical yield load of the contact system with the surface layer.
- (3)
- The surface layer thickness and residual stress in the surface layer co-determines the yield inception location of the contact system, thereby influencing the critical yield load of the contact system jointly. For relatively small surface layer thickness, the yield inception can both happen in the surface layer or substrate, while for large surface layer thickness, the yield inception can only happen in the surface layer. The critical yield load is leveled to a plateau value on the change of residual stress when the yield happens in the substrate. Residual stress can affect the critical yield load only when the yield happens in the surface layer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
R | Radius of rigid hemisphere |
t | Thickness of surface layer |
Coefficient of thermal expansion of surface layer | |
Coefficient of thermal expansion of substrate | |
Young’s modulus, Poisson’s ratio, and yield strength of surface layer | |
Young’s modulus, Poisson’s ratio, and yield strength of substrate | |
Residual stress | |
von Mises equivalent stress | |
Normal stresses (radial, circumferential, and parallel to axis of symmetry) | |
Shear stresses | |
Load | |
Critical yield load of contact system with surface layer | |
Critical yield load of contact system of pure material of substrate | |
t/R | Dimensionless surface layer thickness |
Dimensionless residual stress | |
Dimensionless critical yield load |
Appendix A
References
- Zhang, S.; Leng, Z.; Gu, H.; Yin, J.; Wang, Z.; Liu, Y. Simulation and Experiment Research on the Surface Deformation and Residual Stress of Fractal Rough Surface Single-Shot Peening. Appl. Sci. 2022, 12, 6891. [Google Scholar] [CrossRef]
- Moradi, A.; Heidari, A.; Amini, K.; Aghadavoudi, F.; Abedinzadeh, R. The effect of shot peening time on mechanical properties and residual stress in Ti-6Al-4V alloy. Metall. Res. Technol. 2022, 119, 401. [Google Scholar] [CrossRef]
- Chen, M.; Xing, S.; Li, J.; He, J.; Lu, Y.; Jiang, C.; Ji, V. Surface residual stress and microstructure evolutions of Hastelloy X alloy after severe shot peening. Vacuum 2021, 187, 110136. [Google Scholar] [CrossRef]
- Yi, S.; Wu, Y.; Gong, H.; Peng, C.; He, Y. Experimental Analysis and Prediction Model of Milling-Induced Residual Stress of Aeronautical Aluminum Alloys. Appl. Sci. 2021, 11, 5881. [Google Scholar] [CrossRef]
- Zhou, S.J.; Ji, Z.D.; Shao, T.M. Residual stress evolution during long-term and cyclic aging and annealing of gold films deposited by electron beam evaporation. Vacuum 2015, 120, 132–138. [Google Scholar] [CrossRef]
- Freund, L.B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Joy, T.D.; Weiß, D.; Schramm, B.; Kullmer, G. Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations. Appl. Sci. 2022, 12, 7557. [Google Scholar] [CrossRef]
- Babici, L.M.; Tudor, A.; Romeu, J. Stick-Slip Phenomena and Acoustic Emission in the Hertzian Linear Contact. Appl. Sci. 2022, 12, 9527. [Google Scholar] [CrossRef]
- Ren, X.H.; Zhu, J.H. Wear mechanisms and hardness thresholds under repeated impact contact loading. Sci. China Technol. Sci. 2018, 61, 124–128. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, Y.; Ye, F.; Zhang, W.; Zhou, S. Effects of contact pressure and interface temperature on thermal contact resistance between 2Cr12NiMoWV/BH137 and γ-TiAl/2Cr12NiMoWV interfaces. Therm. Sci. 2020, 24, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ye, F.; Zhang, W.; Zhou, S. Heat transfer behavior caused by temperature difference in reciprocating sliding contact. Sci. Prog. 2020, 103, 0036850419899560. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, C.; Sun, X. Electrical Contact Resistance of Contact Bodies with Cambered Surface. IEEE Access 2020, 8, 93857–93867. [Google Scholar] [CrossRef]
- Tian-Shun, D.; Li, L.; Bin-Guo, F.; Guo-Lu, L.; Hai-Dou, W.; Yang, F. Investigation of rolling/sliding contact fatigue behaviors of induction remelted Ni-based coating. Surf. Coat. Technol. 2019, 372, 451–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, F.; Qu, S.; Ji, V.; Liu, H.; Li, X. Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel. Surf. Coat. Technol. 2020, 386, 125497. [Google Scholar] [CrossRef]
- Holmberg, K.; Ronkainen, H.; Laukkanen, A.; Wallin, K.; Hogmark, S.; Jacobson, S.; Wiklund, U.; Souza, R.M.; Ståhle, P. Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to their tribological fracture behaviour. Wear 2009, 267, 2142–2156. [Google Scholar] [CrossRef]
- Vierneusel, B.; Benker, L.; Tremmel, S.; Göken, M.; Merle, B. Isolating the effect of residual stresses on coating wear by a mechanical stress relaxation technique. Thin Solid Film. 2017, 638, 159–166. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chang, S.Y.; Chang, C.H. Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films. Thin Solid Film. 2009, 517, 4857–4861. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, S.S.; Rha, J.J. The Effect of Residual Stress on the Wear Properties of Dlc Coatings. Int. J. Mod. Phys. B 2010, 24, 2977–2982. [Google Scholar] [CrossRef]
- Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A. Investigation of the effect of residual stress gradient on the wear behavior of PVD thin films. J. Mater. Eng. Perform. 2018, 27, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.S.; Zhou, Z.F.; Munroe, P.; Li, L.K.Y.; Xie, Z. Control of the damage resistance of nanocomposite TiSiN coatings on steels: Roles of residual stress. Thin Solid Film. 2011, 519, 5007–5012. [Google Scholar] [CrossRef]
- Xi, Y.; Bai, Y.; Gao, K.; Pang, X.; Yang, H.; Yan, L.; Volinsky, A.A. Residual stress and microstructure effects on mechanical, tribological and electrical properties of TiN coatings on 304 stainless steel. Ceram. Int. 2018, 44, 15851–15858. [Google Scholar] [CrossRef]
- Bai, M.; Kato, K.; Umehara, N.; Miyake, Y. Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films. Thin Solid Film. 2000, 377, 138–147. [Google Scholar] [CrossRef]
- Bolshakov, A.; Oliver, W.C.; Pharr, G.M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 1996, 11, 760–768. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, X. Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. Acta Mater. 2005, 53, 1913–1919. [Google Scholar] [CrossRef]
- Schall, J.D.; Brenner, D.W. Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data. J. Mater. Res. 2004, 19, 3172–3180. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Shen, W.; Ma, L. The influence of residual stress on incipient plasticity in single-crystal copper thin film under nanoindentation. Comput. Mater. Sci. 2014, 81, 226–232. [Google Scholar] [CrossRef]
- Wang, T.G.; Zhao, S.S.; Hua, W.G.; Li, J.B.; Gong, J.; Sun, C. Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC–Co coatings. Mater. Sci. Eng. A 2010, 527, 454–461. [Google Scholar] [CrossRef]
- Goltsberg, R.; Etsion, I.; Davidi, G. The onset of plastic yielding in a coated sphere compressed by a rigid flat. Wear 2011, 271, 2968–2977. [Google Scholar] [CrossRef]
- Song, W.; Li, L.; Ovcharenko, A.; Jia, D.; Etsion, I.; Talke, F.E. Plastic yield inception of an indented coated flat and comparison with a flattened coated sphere. Tribol. Int. 2012, 53, 61–67. [Google Scholar] [CrossRef]
- Chen, Z.; Goltsberg, R.; Etsion, I. Plasticity evolution in a coated sphere compressed by a rigid flat. Tribol. Int. 2016, 98, 116–124. [Google Scholar] [CrossRef]
- Chen, Z.; Goltsberg, R.; Etsion, I. Yield modes in a coated spherical contact. Tribol. Int. 2018, 120, 309–316. [Google Scholar] [CrossRef]
- Rong, D.S.; Jiang, Y.; Gong, J.M. Residual stress in low temperature carburised layer of austenitic stainless steel. Mater. Sci. Technol. 2017, 33, 277–284. [Google Scholar] [CrossRef]
- Savrai, R.A.; Davydova, N.A.; Makarov, A.V.; Malygina, I.Y. Effect of frictional treatment on the microstructure and surface properties of low-carbon steel. In AIP Conference Proceedings; AIP Publishing LLC: Ekaterinburg, Russia, 2018; Volume 2053, p. 040087. [Google Scholar]
- Goltsberg, R.; Etsion, I. A model for the weakening effect of very thin hard coatings. Wear 2013, 308, 10–16. [Google Scholar] [CrossRef]
- Huang, X.; Etsion, I.; Shao, T. Indentation pop-in as a potential characterization of weakening effect in coating/substrate systems. Wear 2015, 338, 325–331. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, S.; Shao, T. Weakening effect of plastic yielding inception in thin hard coating systems. Chin. Phys. B 2021, 30, 038104. [Google Scholar] [CrossRef]
- Popov, V.L. Contact Mechanics and Friction; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
Parameter | Range | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | 0.1 mm ≤ R ≤ 10 mm | |||||||||||
t/R | 0.0005 | 0.001 | 0.002 | 0.004 | 0.006 | 0.008 | 0.01 | 0.012 | 0.016 | 0.032 | 0.064 | 0.128 |
t | 50 nm ≤ t ≤ 1.28 mm |
Elastic Modulus (GPa) | Yield Strength (MPa) | Poisson’s Ratio | |
---|---|---|---|
Surface layer | 200, 300, 400 | 600, 952, 1200 | 0.3 |
Substrate | 100, 200 | 200, 600 | 0.3 |
(a) | ||||||||
Point (t/R = 0.001) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Dimensionless Residual stress | −0.915 | −0.863 | −0.815 | −0.343 | 0.200 | 0.257 | 0.428 | 0.771 |
Contour plot | ||||||||
Location of yield inception | a | a | b | b | b | c | c | d |
(b) | ||||||||
Point (t/R = 0.008) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Dimensionless Residual stress | −0.857 | −0.785 | −0.743 | −0.515 | −0.315 | −0.228 | 0.115 | 0.572 |
Contour plot | ||||||||
Location of yield inception | e | e | f | f | f | g | g | g |
(c) | ||||||||
Point (t/R = 0.064) | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Dimensionless Residual stress | −0.857 | −0.785 | −0.715 | −0.628 | −0.572 | −0.285 | 0.143 | 0.570 |
Contour plot | ||||||||
Location of yield inception | h | h | h | h | i | i | i | i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Huang, X.; Wu, W.; Yang, Y. Effect of Residual Stress in Surface Layer on Plastic Yield Inception. Appl. Sci. 2022, 12, 11415. https://doi.org/10.3390/app122211415
Zhou S, Huang X, Wu W, Yang Y. Effect of Residual Stress in Surface Layer on Plastic Yield Inception. Applied Sciences. 2022; 12(22):11415. https://doi.org/10.3390/app122211415
Chicago/Turabian StyleZhou, Shujun, Xiao Huang, Wei Wu, and Yue Yang. 2022. "Effect of Residual Stress in Surface Layer on Plastic Yield Inception" Applied Sciences 12, no. 22: 11415. https://doi.org/10.3390/app122211415
APA StyleZhou, S., Huang, X., Wu, W., & Yang, Y. (2022). Effect of Residual Stress in Surface Layer on Plastic Yield Inception. Applied Sciences, 12(22), 11415. https://doi.org/10.3390/app122211415