Novel Genetic Associations for Skin Aging Phenotypes and Validation of Previously Reported Skin GWAS Results
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials & Methods
2.1. Participants
2.2. Measurement of Skin Phenotypes
2.3. Target Skin Phenotype Grading Scale
2.4. Identification of SNP Genotype Based on SNP Array
2.5. Imputation of SNPs
2.6. Genome-Wide Association Scan
3. Results
3.1. Study Population and the Results of Skin Measurements
3.2. Genome-Wide Association Results
3.3. Replication Study of the Previous Report
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, F.; Zhu, G.; Hysi, P.G.; Eller, R.J.; Chen, Y.; Li, Y.; Hamer, M.A.; Zeng, C.; Hopkins, R.L.; Jacobus, C.L.; et al. Genome-Wide Association Studies Identify Multiple Genetic Loci Influencing Eyebrow Color Variation in Europeans. J. Investig. Dermatol. 2019, 139, 1601–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, M.H.; Medland, S.E.; Zhu, G.; Yazar, S.; Viñuela, A.; Wallace, L.; Shekar, S.N.; Duffy, D.L.; Bataille, V.; Glass, D.; et al. Genome-Wide Association Shows that Pigmentation Genes Play a Role in Skin Aging. J. Investig. Dermatol. 2017, 137, 1887–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, A.; Duffy, D.L.; Liu, F.; Zhu, G.; Wu, W.; Chen, Y.; Hysi, P.G.; Zeng, C.; Sanna, M.; Iles, M.M.; et al. Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure. Nat. Commun. 2018, 9, 1684. [Google Scholar] [CrossRef] [PubMed]
- Endo, C.; Johnson, T.A.; Morino, R.; Nakazono, K.; Kamitsuji, S.; Akita, M.; Kawajiri, M.; Yamasaki, T.; Kami, A.; Hoshi, Y.; et al. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci. Rep. 2018, 8, 8974. [Google Scholar] [CrossRef] [Green Version]
- Sulem, P.; Gudbjartsson, D.F.; Stacey, S.N.; Helgason, A.; Rafnar, T.; Jakobsdottir, M.; Steinberg, S.; Gudjonsson, S.A.; Palsson, A.; Thorleifsson, G.; et al. Two newly identified genetic determinants of pigmentation in Europeans. Nat. Genet. 2008, 40, 835–837. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Stacey, S.N.; Helgason, A.; Rafnar, T.; Magnusson, K.P.; Manolescu, A.; Karason, A.; Palsson, A.; Thorleifsson, G.; et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 2007, 39, 1443–1452. [Google Scholar] [CrossRef]
- Lamason, R.L.; Mohideen, M.A.; Mest, J.R.; Wong, A.C.; Norton, H.L.; Aros, M.C.; Jurynec, M.J.; Mao, X.; Humphreville, V.R.; Humbert, J.E.; et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 2005, 310, 1782–1786. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, L.C.; Hamer, M.A.; Gunn, D.A.; Deelen, J.; Lall, J.S.; van Heemst, D.; Uh, H.W.; Hofman, A.; Uitterlinden, A.G.; Griffiths, C.E.M.; et al. A Genome-Wide Association Study Identifies the Skin Color Genes IRF4, MC1R, ASIP, and BNC2 Influencing Facial Pigmented Spots. J. Investig. Dermatol. 2015, 135, 1735–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, J.L. Genetics of hair and skin color. Annu. Rev. Genet. 2003, 37, 67–90. [Google Scholar] [CrossRef]
- Bastiaens, M.; Ter Huurne, J.; Gruis, N.; Bergman, W.; Westendorp, R.; Vermeer, B.J.; Bouwes Bavinck, J.N. The melanocortin-1-receptor gene is the major freckle gene. Hum. Mol. Genet. 2001, 10, 1701–1708. [Google Scholar] [CrossRef]
- Latreille, J.; Ezzedine, K.; Elfakir, A.; Ambroisine, L.; Gardinier, S.; Galan, P.; Hercberg, S.; Gruber, F.; Rees, J.; Tschachler, E.; et al. MC1R gene polymorphism affects skin color and phenotypic features related to sun sensitivity in a population of French adult women. Photochem. Photobiol. 2009, 85, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.F.; Yunxuan, J.; Jay, P.T.; Pierre, F.; Rosemarie, O. Genome-Wide Association Study Identifies Loci Associated with Sensitive Skin. Cosmetics 2020, 7, 49. [Google Scholar] [CrossRef]
- Bastiaens, M.T.; Ter Huurne, J.A.; Kielich, C.; Gruis, N.A.; Westendorp, R.G.; Vermeer, B.J.; Bavinck, J.N.; Team, L.S.C.S. Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair. Am. J. Hum. Genet. 2001, 68, 884–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Box, N.F.; Duffy, D.L.; Irving, R.E.; Russell, A.; Chen, W.; Griffyths, L.R.; Parsons, P.G.; Green, A.C.; Sturm, R.A. Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J. Investig. Dermatol. 2001, 116, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Ter Huurne, J.; Berkhout, M.; Gruis, N.; Bastiaens, M.; Bergman, W.; Willemze, R.; Bavinck, J.N. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Investig. Dermatol. 2001, 117, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liboutet, M.; Portela, M.; Delestaing, G.; Vilmer, C.; Dupin, N.; Gorin, I.; Saiag, P.; Lebbé, C.; Kerob, D.; Dubertret, L.; et al. MC1R and PTCH gene polymorphism in French patients with basal cell carcinomas. J. Investig. Dermatol. 2006, 126, 1510–1517. [Google Scholar] [CrossRef] [Green Version]
- Matichard, E.; Verpillat, P.; Meziani, R.; Gérard, B.; Descamps, V.; Legroux, E.; Burnouf, M.; Bertrand, G.; Bouscarat, F.; Archimbaud, A.; et al. Melanocortin 1 receptor (MC1R) gene variants may increase the risk of melanoma in France independently of clinical risk factors and UV exposure. J. Med. Genet. 2004, 41, e13. [Google Scholar] [CrossRef]
- Raimondi, S.; Sera, F.; Gandini, S.; Iodice, S.; Caini, S.; Maisonneuve, P.; Fargnoli, M.C. MC1R variants, melanoma and red hair color phenotype: A meta-analysis. Int. J. Cancer 2008, 122, 2753–2760. [Google Scholar] [CrossRef]
- Valverde, P.; Healy, E.; Sikkink, S.; Haldane, F.; Thody, A.J.; Carothers, A.; Jackson, I.J.; Rees, J.L. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum. Mol. Genet. 1996, 5, 1663–1666. [Google Scholar] [CrossRef] [Green Version]
- Praetorius, C.; Grill, C.; Stacey, S.N.; Metcalf, A.M.; Gorkin, D.U.; Robinson, K.C.; Van Otterloo, E.; Kim, R.S.; Bergsteinsdottir, K.; Ogmundsdottir, M.H.; et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell 2013, 155, 1022–1033. [Google Scholar] [CrossRef]
- Laville, V.; Clerc, S.L.; Ezzedine, K.; Jdid, R.; Taing, L.; Labib, T.; Coulonges, C.; Ulveling, D.; Carpentier, W.; Galan, P. A genome-wide association study in Caucasian women suggests the involvement of HLA genes in the severity of facial solar lentigines. Pigment Cell Melanoma Res. 2016, 29, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Vierkötter, A.; Krämer, U.; Sugiri, D.; Morita, A.; Yamamoto, A.; Kaneko, N.; Matsui, M.; Krutmann, J. Development of lentigines in German and Japanese women correlates with variants in the SLC45A2 gene. J. Investig. Dermatol. 2012, 132 3 Pt 1, 733–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, S.; Lee, W.J. Menopause, Ultraviolet Exposure, and Low Water Intake Potentially Interact with the Genetic Variants Related to Collagen Metabolism Involved in Skin Wrinkle Risk in Middle-Aged Women. Int. J. Environ. Res. Public Health 2021, 18, 2044. [Google Scholar] [CrossRef]
- Jacobs, L.C.; Liu, F.; Bleyen, I.; Gunn, D.A.; Hofman, A.; Klaver, C.C.; Uitterlinden, A.G.; Neumann, H.A.; Bataille, V.; Spector, T.D.; et al. Intrinsic and extrinsic risk factors for sagging eyelids. JAMA Dermatol. 2014, 150, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Le Clerc, S.; Taing, L.; Ezzedine, K.; Latreille, J.; Delaneau, O.; Labib, T.; Coulonges, C.; Bernard, A.; Melak, S.; Carpentier, W.; et al. A genome-wide association study in Caucasian women points out a putative role of the STXBP5L gene in facial photoaging. J. Investig. Dermatol. 2013, 133, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Hasebe, Y.; Igarashi, T.; Kawagishi-Hotta, M.; Okuno, R.; Yamada, T.; Hasegawa, S. Analysis of the effect of daily stress on the skin and search for genetic loci involved in the perceived stress of an individual. Ski. Health Dis. 2022, 2, e110. [Google Scholar] [CrossRef]
- Lim, S.; Shin, J.; Cho, Y.; Kim, K.P. Dietary Patterns Associated with Sebum Content, Skin Hydration and pH, and Their Sex-Dependent Differences in Healthy Korean Adults. Nutrients 2019, 11, 619. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.Y.; Lee, K.C.; Woo, J.E.; Park, S.H.; Lee, S.; Joo, J.; Bae, J.S.; Kwon, H.J.; Park, B.J. A Genome-Wide Association Study and Machine-Learning Algorithm Analysis on the Prediction of Facial Phenotypes by Genotypes in Korean Women. Clin. Cosmet. Investig. Dermatol. 2022, 15, 433–445. [Google Scholar] [CrossRef]
- Oh Kim, J.; Park, B.; Yoon Choi, J.; Ra Lee, S.O.; Jin Yu, S.O.; Goh, M.; Lee, H.; Park, W.S.; Soo Suh, I.N.; Koh, D.S.; et al. Identifi cation of the Underlying Genetic Factors of Skin Aging in a Korean Population Study. J. Cosmet. Sci. 2021, 72, 63–80. [Google Scholar]
- Puizina-Ivić, N. Skin aging. Acta Derm. Alp. Pannonica Adriat. 2008, 17, 47–54. [Google Scholar]
- Kim, H.H.; Cho, S.; Lee, S.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J. Lipid Res. 2006, 47, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.G.; Leem, S.; Kim, B.; Kim, Y.; Lee, S.G.; Song, H.J.; Seo, J.Y.; Park, S.G.; Won, H.H.; Kang, N.G. GWAS Analysis of 17,019 Korean Women Identifies the Variants Associated with Facial Pigmented Spots. J. Investig. Dermatol. 2021, 141, 555–562. [Google Scholar] [CrossRef]
- Seo, J.Y.; You, S.W.; Shin, J.G.; Kim, Y.; Park, S.G.; Won, H.H.; Kang, N.G. GWAS Identifies Multiple Genetic Loci for Skin Color in Korean Women. J. Investig. Dermatol. 2022, 142, 1077–1084. [Google Scholar] [CrossRef]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef]
- Sayantan, D.; Lukas, F.; Sebastian, S.; Carlo, S.; Adam, E.L.; Alan, K.; Scott, I.V.; Emily, Y.C.; Shawn, L.; Matt, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, C.D. IBM SPSS Statistics 19 Made Simple; Psychology Press: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Measuring inconsistency in meta-analysis. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Lyman, S.K.; Gerace, L.; Baserga, S.J. Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. RNA 1999, 5, 1597–1604. [Google Scholar] [CrossRef] [Green Version]
- Savage, S.A.; Alter, B.P. Dyskeratosis congenita. Hematol. Oncol. Clin. N. Am. 2009, 23, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Drachtman, R.A.; Alter, B.P. Dyskeratosis congenita: Clinical and genetic heterogeneity. Report of a new case and review of the literature. Am. J. Pediatr. Hematol. Oncol. 1992, 14, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Mengwasser, K.E.; Bryant, C.E.; Gay, N.J.; Gangloff, M. LPS ligand and culture additives improve production of monomeric MD-1 and 2 in Pichia pastoris by decreasing aggregation and intermolecular disulfide bonding. Protein Expr. Purif. 2011, 76, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massé, J.; Laurent, A.; Nicol, B.; Guerrier, D.; Pellerin, I.; Deschamps, S. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells. Exp. Cell Res. 2010, 316, 1190–1201. [Google Scholar] [CrossRef]
- Mizuhashi, K.; Kanamoto, T.; Moriishi, T.; Muranishi, Y.; Miyazaki, T.; Terada, K.; Omori, Y.; Ito, M.; Komori, T.; Furukawa, T. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum. Mol. Genet. 2014, 23, 2953–2967. [Google Scholar] [CrossRef] [Green Version]
- Marcu, M.G.; Zhang, L.; Nau-Staudt, K.; Trifaró, J.M. Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate. Blood 1996, 87, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Winderickx, J.; Nauwelaers, D.; Dumortier, F.; De Doncker, A.; Thevelein, J.M.; Van Dijck, P. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Yeast 1999, 15, 1097–1109. [Google Scholar] [CrossRef]
- Bernau, K.; Torr, E.E.; Evans, M.D.; Aoki, J.K.; Ngam, C.R.; Sandbo, N. Tensin 1 Is Essential for Myofibroblast Differentiation and Extracellular Matrix Formation. Am. J. Respir. Cell Mol. Biol. 2017, 56, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Goreczny, G.J.; Forsythe, I.J.; Turner, C.E. Hic-5 Regulates Fibrillar Adhesion Formation to Control Tumor Extracellular Matrix Remodeling through Interaction with Tensin1. Oncogene 2018, 2018 37, 1699–1713. [Google Scholar] [CrossRef]
- Bordogna, W.; Hudson, J.D.; Buddle, J.; Bennett, D.C.; Beach, D.H.; Carnero, A. EMX homeobox genes regulate microphthalmia and alter melanocyte biology. Exp. Cell Res. 2005, 311, 27–38. [Google Scholar] [CrossRef]
Phenotype Measurements | Target Phenotypes | ||||||||
---|---|---|---|---|---|---|---|---|---|
Reported Study | Present Study | Combined Study | Coded Phenotype | ||||||
Reported Study | Present Study | Combined Study | |||||||
Characteristics | Average ± SD or N (%) | ||||||||
Population (n) | 1079 | 261 | 1340 | ||||||
Gender (female, %) | 100% | ||||||||
Age (year, mean ± SD) | 40.81 ± 10.90 | 45.10 ± 11.92 | 41.65 ± 11.23 | ||||||
Phenotype (equipment) | Measure item | Code | p-value | Average ± SD or N (%) | |||||
Wrinkle (Primos CR) | Eye: Average roughness (Ra) | W101 | 20.81 ± 5.24 | 21.74 ± 5.06 | <0.001 | 20.64 ± 5.22 | 7.75 ± 2.58 | 8.95 ± 2.23 | 7.74 ± 2.51 |
Eye: Maximum depth (Rmax) | W102 | 198.47 ± 71.97 | 221.68 ± 60.84 | <0.001 | 198.34 ± 69.75 | ||||
Glabela: Average roughness (Ra) | W103 | 25.18 ± 7.06 | 20.25 ± 5.96 | <0.001 | 23.75 ± 6.92 | ||||
Glabela: Maximum depth (Rmax) | W104 | 193.75 ± 69.61 | 163.27 ± 50.32 | <0.001 | 184.7 ± 62.81 | ||||
Moisture (Corneometer) | Glabela: Moisture content (A.U.) | A101 | 64.84 ± 9.97 | 57.57 ± 11.75 | <0.001 | 63.59 ± 10.55 | 3.98 ± 1.38 | 5.45 ± 0.72 | 4.24 ± 1.39 |
Cheek: Moisture content (A.U.) | A102 | 70.13 ± 9.48 | 60.13 ± 11.16 | <0.001 | 68.18 ± 10.34 | ||||
Pigmentation (Mexameter) (CM-700d) | Pigmentation site: Melanin (M.I.) | M101 | 166.15 ± 35.83 | 135.38 ± 32.26 | <0.001 | 160.56 ± 36.89 | 8 ± 2.35 | 6.39 ± 1.85 | 7.77 ± 2.31 |
Nonpigmentation site: Melanin (M.I.) | M102 | 119.25 ± 28.35 | 98.49 ± 24.85 | <0.001 | 116.51 ± 28.94 | ||||
Pigmentation site: Brightness (L*) | R201 | 59.95 ± 2.62 | 60.80 ± 2.91 | <0.001 | 60.25 ± 2.68 | ||||
Nonpigmentation site: Brightness (L*) | R202 | 63.22 ± 2.33 | 64.27 ± 2.45 | <0.001 | 63.49 ± 2.37 | ||||
Oil (Sebumeter) | Glabela: Oil content (μg/cm2) | L101 | 85.19 ± 61.23 | 45.56 ± 30.69 | <0.001 | 78.91 ± 59.68 | 4.07 ± 1.48 | 2.95 ± 1.3 | 3.94 ± 1.47 |
Cheek: Oil content (μg/cm2) | L102 | 48.57 ± 42.49 | 38.46 ± 24.90 | <0.001 | 47.55 ± 40.68 | ||||
Sensitivity (10% lactic acid) | Sensitive/Nonsensitive | S101 | 534 (49.5%)/ 545 (50.5%) | 206 (78.9%)/ 55 (21.1%) | <0.001 | 740 (55.22%) /600 (44.78%) |
Combined (n = 1340) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trait | SNP | CHR:BP | REF | ALT | Feature | Real by Gene | MAF | Minor Allele | BETA ± SE a | p | ||
This Study | KOR | ASN | ||||||||||
wrinkle | rs72721056 | 1:93620281 | C | A | IntronVariant | BCAR3 | 0.066 | 7 × 10−4 | 0 | A | 0.75 ± 0.15 | 8.90 × 10−7 |
rs34682406 | 7:6376481 | G | C | IntronVariant | RAC1 | 0.054 | 0.038 | 0.03 | C | 0.88 ± 0.17 | 1.30 × 10−7 | |
rs10739924 | 9:92072959 | A | C | IntronVariant | SPTLC1 | 0.419 | 0.433 | 0.07 | C | 0.37 ± 0.08 | 2.62 × 10−6 | |
12:29159521 | 12:29159521 | G | A | Upstream | FAR2 | 0.421 | 1 | 0 | GA | −0.39 ± 0.08 | 2.01 × 10−6 | |
rs61970162 | 13:108997793 | G | A | Intron | MYO16 | 0.083 | 0.01 | 0.01 | A | 0.69 ± 0.14 | 8.44 × 10−7 | |
rs7159152 | 14:43993202 | G | T | Intergenic | - | 0.32 | 0.319 | 0.34 | T | 0.38 ± 0.08 | 3.70 × 10−6 | |
Moisture | rs149963203 | 2:202264235 | A | G | Upstream Variant | NOP58 | 0.189 | 0.064 | 0.17 | G | −0.42 ± 0.07 | 6.14 × 10−10 |
rs201058 | 6:6725784 | A | C | Upstream Variant | LY86 | 0.435 | 0.185 | 1 | A | −0.35 ± 0.05 | 2.38 × 10−11 | |
rs16912205 | 9:107096948 | C | T | Downstream | ZNF462 | 0.191 | 0.108 | 0.16 | T | 0.46 ± 0.07 | 8.25 × 10−12 | |
rs56133064 | 12:124263243 | A | G | Intergenict | RFLNA | 0.07 | 0.031 | 0 | G | 0.62 ± 0.1 | 8.57 × 10−10 | |
rs11640236 | 16:85376910 | C | A | Intron Variant | GSE1 | 0.175 | 0.089 | 0 | A | 0.65 ± 0.07 | 1.40 × 10−21 | |
Pigmentation | rs4233226 | 1:227330340 | C | A | Downstream | CDC42BPA | 0.473 | 0.49 | 0.52 | C | 0.42 ± 0.09 | 1.00 × 10−6 |
rs1830202 | 2:78054305 | A | G | Downstream | LRRTM4 | 0.463 | 0.476 | 0.44 | G | 0.39 ± 0.09 | 9.08 × 10−6 | |
rs56133064 | 12:124263243 | A | G | Intergenic | RFLNA | 0.07 | 0.031 | 0 | G | −0.89 ± 0.17 | 1.55 × 10−7 | |
13:32311074 | 13:32311074 | - | - | - | - | 0.413 | - | - | GT | −0.46 ± 0.09 | 1.39 × 10−7 | |
rs11640236 | 16:85376910 | C | A | Intron Variant | GSE1 | 0.175 | 0.089 | 0 | A | −0.62 ± 0.11 | 5.66 × 10−8 | |
Oil | rs1918689 | 2:84679729 | G | A | IntronVariant | DNAH6 | 0.09 | 0.068 | 0.08 | G | 0.43 ± 0.09 | 2.89 × 10−6 |
rs113608863 | 6:492601 | A | G | IntronVariant | EXOC2 | 0.054 | 0.059 | 0.07 | G | −0.52 ± 0.12 | 9.44 × 10−6 | |
rs62617088 | 12:52487848 | C | A | MissenseVariant | KRT6A | 0.054 | 0.056 | 0 | A | −0.54 ± 0.12 | 4.16 × 10−6 | |
rs2639681 | 15:53030749 | T | C | Downstream | ONECUT1 | 0.254 | 0.267 | 0.19 | C | 0.27 ± 0.06 | 7.97 × 10−6 | |
rs7230869 | 18:49630634 | T | A | Downstream | LIPG | 0.388 | 0.377 | 0.41 | T | 0.25 ± 0.06 | 6.19 × 10−6 | |
rs8108544 | 19:45916195 | C | A | Downstream | NANOS2 | 0.177 | 0.188 | 0.19 | A | −0.32 ± 0.07 | 4.53 × 10−6 | |
Sensitivity | SNP | CHR:BP | REF | ALT | feature | Real by gene | This study | KOR | ASN | A1 | OR (95%CI) b | p |
rs55999874 | 7:12575508 | G | T | Intron Variant | SCIN | 0.308 | 0.212 | 0.37 | T | 1.57 (1.34–1.85) | 5.01 × 10−8 | |
rs28526775 | 8:82317642 | A | C | Downstream | SNX16 | 0.127 | 0.125 | 0.01 | C | 0.53 (0.42–0.67) | 1.49 × 10−7 | |
rs41308918 | 9:107097334 | C | T | IntronVariant | ZNF462 | 0.19 | 0.108 | 0.16 | T | 1.67 (1.36–2.05) | 9.96 × 10−7 | |
rs1106351 | 17:55247276 | G | A | Downstream | MIR548Q | 0.187 | 0.119 | 0.13 | A | 1.66 (1.35–2.04) | 1.21 × 10−6 | |
rs78295829 | 22:31575365 | C | T | Missense Variant | SFI1 | 0.092 | - | 0 | T | 2.96 (2.15–4.07) | 2.44 × 10−11 |
Reported Study (n = 1079) | This Study (n = 261) | Meta−Analysis | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAF | |||||||||||||||||
Trait | SNP | CHR:BP | REF | ALT | Gene | This Study | KOR | ASN | Minor Allele | BETA ± SE a | p | Minor Allele | BETA ± SE a | p | p-Value | I | Q |
wrinkle | rs117381658 | 1:157353684 | C | T | FCRL5 | 0.07 | 0.04 | 0.01 | T | 0.82 ± 0.19 | 1.17 × 10−5 | T | −0.16 ± 0.32 | 6.06 × 10−1 | 4.07 × 10−4 | 86.05 | 7.40 × 10−3 |
rs1961184 | 10:63733371 | G | T | REEP3 | 0.06 | 0.05 | 0.07 | T | 0.68 ± 0.19 | 3.09 × 10−4 | T | 0.29 ± 0.35 | 4.01 × 10−1 | 3.38 × 10−4 | 0 | 3.26 × 10−1 | |
rs1929013 | 1:244230708 | G | C | ADSS | 0.38 | 0.35 | 0.33 | G | −0.4 ± 0.09 | 1.50 × 10−5 | G | −0.07 ± 0.16 | 6.64 × 10−1 | 6.65 × 10−5 | 68.83 | 7.33 × 10−2 | |
rs7042102 | 9:92001508 | C | T | SPTLC1 | 0.42 | 0.44 | 0.45 | T | 0.38 ± 0.09 | 1.94 × 10−5 | T | −0.01 ± 0.16 | 9.44 × 10−1 | 1.97 × 10−4 | 78.09 | 3.26 × 10−2 | |
Moisture | rs9873353 | 3:31233850 | C | T | STT3B | 0.02 | 0.02 | 0.02 | T | −0.55 ± 0.12 | 3.45 × 10−6 | T | 0.55 ± 0.26 | 3.48 × 10−2 | 7.43 × 10−4 | 93.29 | 1.00 × 10−4 |
rs34567709 | 17:61492168 | T | G | TBX4 | 0.12 | 0.12 | 0.14 | G | 0.42 ± 0.09 | 1.85 × 10−6 | G | −0.06 ± 0.09 | 5.42 × 10−1 | 2.02 × 10−3 | 92.78 | 2.00 × 10−4 | |
rs1362404 | 16:51973264 | G | T | - | 0.25 | 0.28 | 0.29 | G | −0.32 ± 0.07 | 5.52 × 10−6 | G | 0.03 ± 0.08 | 7.37 × 10−1 | 1.86 × 10−3 | 91.15 | 8.00 × 10−4 | |
rs7853290 | 9:71638804 | G | A | TRPM3 | 0.05 | 0.07 | 0.09 | A | 0.55 ± 0.12 | 2.15 × 10−6 | A | 0.08 ± 0.16 | 6.01 × 10−1 | 3.37 × 10−5 | 82.77 | 1.60 × 10−2 | |
rs143938096 | 15:79098451 | C | A | CTSH | 0.08 | 0.08 | 0.06 | A | −0.54 ± 0.12 | 3.78 × 10−6 | A | 0.15 ± 0.11 | 1.96 × 10−1 | 2.02 × 10−2 | 94.41 | 0 | |
rs12955989 | 18:24106190 | A | G | TTC39C | 0.25 | 0.21 | 0.15 | G | 0.35 ± 0.07 | 2.67 × 10−6 | G | 0.1 ± 0.08 | 1.98 × 10−1 | 1.60 × 10−5 | 81.27 | 2.08 × 10−2 | |
Pigmentation | rs74653330 | 15:27983407 | C | T | OCA2 | 0.06 | 0.07 | 0.03 | T | −1.04 ± 0.19 | 8.91 × 10−8 | T | 0.16 ± 0.34 | 6.40 × 10−1 | 7.86 × 10−6 | 89.23 | 2.30 × 10−3 |
rs34466224 | 19:3219644 | G | A | NCLN | 0.22 | 0.22 | 0.22 | A | 0.65 ± 0.13 | 3.29 × 10−7 | A | −0.03 ± 0.2 | 8.62 × 10−1 | 2.07 × 10−5 | 87.96 | 3.90 × 10−3 | |
rs11685354 | 2:217996408 | C | A | TNS1 | 0.46 | 0.41 | 0.45 | A | −0.46 ± 0.1 | 7.99 × 10−6 | A | 0.32 ± 0.16 | 4.05 × 10−2 | 8.56 × 10−3 | 94.28 | 0 | |
rs4653497 | 1:227355326 | T | C | CDC42BPA | 0.46 | 0.49 | 0.44 | T | 0.44 ± 0.1 | 1.46 × 10−5 | T | 0.11 ± 0.16 | 4.74 × 10−1 | 2.78 × 10−5 | 57.22 | 1.26 × 10−1 | |
rs59784607 | 16:25774628 | G | T | HS3ST4 | 0.17 | 0.19 | 0.13 | T | −0.54 ± 0.12 | 1.64 × 10−5 | T | −0.19 ± 0.21 | 3.58 × 10−1 | 2.84 × 10−5 | 51.58 | 1.51 × 10−1 | |
rs76548385 | 7:1291682 | C | T | UNCX | 0.09 | 0.09 | 0.07 | T | 0.79 ± 0.18 | 1.07 × 10−5 | T | 0.42 ± 0.27 | 1.27 × 10−1 | 5.54 × 10−6 | 21.4 | 2.59 × 10−1 | |
Oil | rs308971 | 3:12075120 | G | A | SYN2 | 0.24 | 0.26 | 0.19 | G | −0.34 ± 0.07 | 2.70 × 10−6 | G | 0.08 ± 0.13 | 5.31 × 10−1 | 1.67 × 10−4 | 88.22 | 3.60 × 10−3 |
rs151209785 | 18:74549791 | T | C | CNDP1 | 0.03 | 0.03 | 0.02 | C | −0.57 ± 0.12 | 4.38 × 10−6 | C | 0.18 ± 0.32 | 5.77 × 10−1 | 4.03 × 10−5 | 79.03 | 2.90 × 10−2 | |
rs9577919 | 13:113861036 | C | T | GAS6 | 0.06 | 0.05 | 0.07 | T | 0.61 ± 0.14 | 9.09 × 10−6 | T | 0.13 ± 0.22 | 5.60 × 10−1 | 4.18 × 10−5 | 71.01 | 6.33 × 10−2 | |
rs8107564 | 19:6964536 | A | G | INSR | 0.09 | 0.11 | 0.09 | A | 0.42 ± 0.1 | 2.41 × 10−5 | A | −0.02 ± 0.18 | 9.26 × 10−1 | 2.33 × 10−4 | 77.6 | 3.46 × 10−2 | |
rs6490805 | 13:23510670 | T | C | TNFRSF19 | 0.15 | 0.16 | 0.15 | C | 0.36 ± 0.08 | 7.76 × 10−6 | C | 0.13 ± 0.15 | 3.81 × 10−1 | 1.25 × 10−5 | 47.08 | 1.69 × 10−1 | |
SNP | CHR:BP | REF | ALT | gene | This study | KOR | ASN | A1 | OR (95% CI) b | p | A1 | OR (95% CI) b | p | p-value | I | Q | |
Sensitivity | rs7334780 | 13:106182099 | T | C | - | 0.3 | 0.33 | 0.33 | T | 0.61 (0.61–0.5) | 8.02 × 10−7 | T | 1.02 (0.64–1.63) | 9.38 × 10−1 | 6.02 × 10−6 | 74.22 | 4.89 × 10−2 |
rs41308 | 7:28636081 | C | T | CREB5 | 0.39 | 0.36 | 0.35 | C | 1.58 (1.58–1.3) | 3.37 × 10−6 | C | 0.95 (0.61–1.48) | 8.25 × 10−1 | 1.65 × 10−5 | 67.07 | 8.14 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, M.-Y.; Choi, J.-E.; Lee, D.-S.; Lee, S.-R.; Lee, S.-I.; Park, J.-H.; Shin, J.-H.; Suh, I.S.; Kim, B.H.; Hong, K.-W. Novel Genetic Associations for Skin Aging Phenotypes and Validation of Previously Reported Skin GWAS Results. Appl. Sci. 2022, 12, 11422. https://doi.org/10.3390/app122211422
Cha M-Y, Choi J-E, Lee D-S, Lee S-R, Lee S-I, Park J-H, Shin J-H, Suh IS, Kim BH, Hong K-W. Novel Genetic Associations for Skin Aging Phenotypes and Validation of Previously Reported Skin GWAS Results. Applied Sciences. 2022; 12(22):11422. https://doi.org/10.3390/app122211422
Chicago/Turabian StyleCha, Mi-Yeon, Ja-Eun Choi, Da-Som Lee, So-Ra Lee, Sang-In Lee, Jong-Ho Park, Jin-Hee Shin, In Soo Suh, Byung Ho Kim, and Kyung-Won Hong. 2022. "Novel Genetic Associations for Skin Aging Phenotypes and Validation of Previously Reported Skin GWAS Results" Applied Sciences 12, no. 22: 11422. https://doi.org/10.3390/app122211422
APA StyleCha, M. -Y., Choi, J. -E., Lee, D. -S., Lee, S. -R., Lee, S. -I., Park, J. -H., Shin, J. -H., Suh, I. S., Kim, B. H., & Hong, K. -W. (2022). Novel Genetic Associations for Skin Aging Phenotypes and Validation of Previously Reported Skin GWAS Results. Applied Sciences, 12(22), 11422. https://doi.org/10.3390/app122211422