Changes in Soil Biological Properties after Sewage Sludge and Pesticide Application in Wheat Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Parameters of Sewage Sludge and Soil with Sewage Sludge
2.3. Soil Sampling and Preparing
2.3.1. Chemical Analyses of Soil
2.3.2. Soil Enzyme Activities
2.4. DNA Extraction, Polymerase Chain Reaction (PCR), and TRFLP Analysis
2.5. Bacteria amoA Gene Abundance
2.6. Data Analysis
3. Results
3.1. Soil Enzyme Activities
3.2. Biodiversity of Bacteria and Fungi in Soil
3.3. Abundance of amoA Bacteria Gene
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adegoke, A.A.; Awolusi, O.O.; Stenström, T.A. Organic Fertilizers: Public Health Intricacies. In Organic Fertilizers-From Basic Concepts to Applied Outcomes; InTech: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the Combined Application of Organic and Mineral Nutrient Sources Influence Maize Productivity? A Meta-Analysis. Plant Soil 2011, 342, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wydro, U.; Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A. Microbial Diversity and P Content Changes after the Application of Sewage Sludge and Glyphosate to Soil. Minerals 2021, 11, 1423. [Google Scholar] [CrossRef]
- Catarino, M.; Soares Dias, A.P.; Ramos, M. Double Benefit Biodiesel Produced from Waste Frying Oils and Animal Fats. In WASTES–Solutions, Treatments and Opportunities II; CRC Press: Boca Raton, FL, USA, 2017; pp. 153–159. [Google Scholar]
- Bauman-Kaszubska, H.; Sikorski, M. The Impact of Selected Sewage Treatment Methods on the Change in Parameters of Sewage Sludge Originating from Municipal Sewage Treatment Plants. Inż. Ekol. 2018, 19, 199–207. [Google Scholar] [CrossRef]
- Wieczorek, J.; Gambuś, F.; Baran, A. Heavy Metal Content and Yielding of Italian Ryegrass Cultivated in the Soil Intensively Fertilized with Municipal Sewage Sludges. E3S Web Conf. 2013, 1, 15005. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential Benefits and Risks of Land Application of Sewage Sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Czech, T.; Gambuś, F.; Wieczorek, J. Assessment of Chemical Composition of Waste Materials from Hard Coal Burning in View of Their Agricultural and Environmental Applications. Inż. Ekol. 2013, 34, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, F.Y.; Rong, X.M. Risk and Leaching Characteristics of Nitrogen and Phosphorus in Sandy Soil Amended with Sewage Sludge. J. Soil Water Conserv. 2013, 27, 93–97. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Borowiak, K.; Budka, A.; Ratajczak, K. The Effect of Sewage Sludge and BAF Inoculant on Plant Condition and Yield as Well as Biochemical and Microbial Activity of Soil in Willow (Salix Viminalis L.) Culture as an Energy Crop. PeerJ 2019, 7, e6434. [Google Scholar] [CrossRef] [Green Version]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil Health through Soil Disease Suppression: Which Strategy from Descriptors to Indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Grobelak, A.; Placek, A.; Grosser, A.; Singh, B.R.; Almås, Å.R.; Napora, A.; Kacprzak, M. Effects of Single Sewage Sludge Application on Soil Phytoremediation. J. Clean. Prod. 2017, 155, 189–197. [Google Scholar] [CrossRef]
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. Soil Biological Activity as an Indicator of Soil Pollution with Pesticides—A Review. Appl. Soil Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wolejko, E.; Wydro, U.; Butarewicz, A.; Lozowicka, B. MCPA (2-Methyl-4-Chlorophenoxyacetic Acid) and Sulfosulfuron—Pesticides with Potential Endocrine Disrupting Compounds Properties. Dwt 2018, 117, 194–201. [Google Scholar] [CrossRef]
- Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Ionic Liquids with Herbicidal Anions. Tetrahedron 2011, 67, 4838–4844. [Google Scholar] [CrossRef]
- Ławniczak, Ł.; Syguda, A.; Borkowski, A.; Cyplik, P.; Marcinkowska, K.; Wolko, Ł.; Praczyk, T.; Chrzanowski, Ł.; Pernak, J. Influence of Oligomeric Herbicidal Ionic Liquids with MCPA and Dicamba Anions on the Community Structure of Autochthonic Bacteria Present in Agricultural Soil. Sci. Total Environ. 2016, 563–564, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Conrado, N. Hydrolysis Study and Extraction of Spiroxamine from Soils of Different Physico-Chemical Properties. Chemosphere 2009, 77, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tsuji, S.S.; Li, Y.; Hu, M.; Bandeira, M.A.; Câmara, M.P.S.; Michereff, S.J.; Schnabel, G. Reduced Sensitivity of Azoxystrobin and Thiophanate-Methyl Resistance in Lasiodiplodia Theobromae from Papaya. Pestic. Biochem. Physiol. 2020, 162, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Yadav, A.N.; Kazy, S.K.; Saxena, A.K.; Suman, A. Evaluating the Diversity and Phylogeny of Plant growth Promoting Bacteria Associated with Wheat (Triticum Aestivum) Growing in Central Zone of India. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 432–447. [Google Scholar]
- Gleń, K.; Gondek, K. Sewage Sludge Influence on Microbiological and Biochemical Soil Activity. Eng. Environ. Prot. 2014, 17, 619–630. [Google Scholar] [CrossRef]
- Pepper, I.L.; Brooks, J.P.; Gerba, C.P. Pathogens in Biosolids. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–41. [Google Scholar]
- The Regulation of the Minister of Environment on the on the Municipal Sewage Sludge (own translation)—Rozporządzenie Ministra Środowiska z dnia 6 lutego 2015 r. w sprawie komunalnych osadów ściekowych; O.J. 2015 poz. 257. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150000257 (accessed on 26 July 2022). (In Polish)
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Casida, L.E., Jr.; Klein, D.A.; Santoro, T. Soil Dehydrogenase Activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis: Microbiological and Biochemical Properties; Weaver, R.W., Angle, J.S., Botttomley, P.S., Eds.; Soil Science Society of America: Madison, WI, USA, 1994. [Google Scholar]
- Johnson, J.I.; Temple, K.L. Some variables affecting the measurements of catalase activity in soil. Soil Sci. Soc. Am. J. 1964, 28, 207–216. [Google Scholar] [CrossRef]
- Hoffman, G.; Teicher, K. Ein kolorimetrisches Verfahren zur Bestimmung der Ureaseaktivität in Böden. Zeit. Pflanzenernahr. Dung. Bodenkund. 1961, 95, 55–63. [Google Scholar] [CrossRef]
- Mattana, S.; Chelinho, S.; Sousa, J.P.; Alcañiz, J.M.; Domene, X. Nonylphenol Causes Shifts in Microbial Communities and Nitrogen Mineralization in Soil Microcosms. Ecotoxicol. Environ. Saf. 2019, 181, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, E.; Aburto-Medina, A.; Taha, M.; Ball, A.S. A Quantitative PCR Approach for Quantification of Functional Genes Involved in the Degradation of Polycyclic Aromatic Hydrocarbons in Contaminated Soils. MethodsX 2016, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Farsang, A.; Babcsányi, I.; Ladányi, Z.; Perei, K.; Bodor, A.; Csányi, K.T.; Barta, K. Evaluating the Effects of Sewage Sludge Compost Applications on the Microbial Activity, the Nutrient and Heavy Metal Content of a Chernozem Soil in a Field Survey. Arab. J. Geosci. 2020, 13, 982. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Vilgalys, R.J. Quantitative Analyses of Nitrogen Cycling Genes in Soils. Pedobiologia 2005, 49, 665–672. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, Y.; Zhu, L.; Zhang, J.; Li, B.; Wang, J.; Wang, J.; Zhang, C.; Cheng, C. Effects of the Herbicide Mesotrione on Soil Enzyme Activity and Microbial Communities. Ecotoxicol. Environ. Saf. 2018, 164, 571–578. [Google Scholar] [CrossRef]
- Yao, R.; Yuan, Q.; Wang, K. Enrichment of Denitrifying Bacterial Community Using Nitrite as an Electron Acceptor for Nitrogen Removal from Wastewater. Water 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jiang, W.; Jian, Q.; Song, W.; Zheng, Z.; Wang, D.; Liu, X. Residues and Dissipation Kinetics of Triazole Fungicides Difenoconazole and Propiconazole in Wheat and Soil in Chinese Fields. Food Chem. 2015, 168, 396–403. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Bacterial Diversity and Enzymatic Activity in a Soil Recently Treated with Tebuconazole. Ecol. Indic. 2021, 123, 107373. [Google Scholar] [CrossRef]
- Sun, Y.B.; Wang, L.; Xu, Y.M.; Liang, X.F.; Zheng, S.N. Ecotoxicological Effect of Mesotrione on Enzyme Activity and Microbial Community in Agricultural Soils. Appl. Ecol. Environ. Res. 2020, 18, 3525–3541. [Google Scholar] [CrossRef]
- Sviridov, A.V.; Shushkova, T.V.; Ermakova, I.T.; Ivanova, E.V.; Epiktetov, D.O.; Leontievsky, A.A. Microbial degradation of glyphosate herbicides. Prikl. Biochem. Mikrobiol. 2015, 51, 183–190. [Google Scholar] [PubMed]
- Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ. Sci. Pollut. Res. 2015, 22, 643–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Zhou, H.; Zhou, S.; Li, Z.; Wei, C.; Yu, Y.; Hay, A.G. Fomesafen Impacts Bacterial Communities and Enzyme Activities in the Rhizosphere. Environ. Pollut. 2019, 253, 302–311. [Google Scholar] [CrossRef]
- De Vrieze, J.; Ijaz, U.Z.; Saunders, A.M.; Theuerl, S. Terminal Restriction Fragment Length Polymorphism Is an “Old School” Reliable Technique for Swift Microbial Community Screening in Anaerobic Digestion. Sci. Rep. 2018, 8, 16818. [Google Scholar] [CrossRef] [Green Version]
- Gryta, A.; Frąc, M.; Oszust, K. Community Shift in Structure and Functions across Soil Profile in Response to Organic Waste and Mineral Fertilization Strategies. Appl. Soil Ecol. 2019, 143, 55–60. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, Z.; Liu, H.; Li, J.; Wang, Y.; Xu, H. Application of Acclimated Sewage Sludge as a Bio-Augmentation/Bio-Stimulation Strategy for Remediating Chlorpyrifos Contamination in Soil With/without Cadmium. Sci. Total Environ. 2017, 579, 657–666. [Google Scholar] [CrossRef]
- Prudnikova, S.; Streltsova, N.; Volova, T. The Effect of the Pesticide Delivery Method on the Microbial Community of Field Soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 8681–8697. [Google Scholar] [CrossRef]
- Könneke, M.; Bernhard, A.E.; de La Torre, J.R.; Walker, C.B.; Waterbury, J.B.; Stahl, D.A. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005, 437, 543–546. [Google Scholar] [CrossRef]
- Crouzet, O.; Poly, F.; Bonnemoy, F.; Bru, D.; Batisson, I.; Bohatier, J.; Philippot, L.; Mallet, C. Functional and Structural Responses of Soil N-Cycling Microbial Communities to the Herbicide Mesotrione: A Dose-Effect Microcosm Approach. Environ. Sci. Pollut. Res. Int. 2016, 23, 4207–4217. [Google Scholar] [CrossRef]
Treatment Variants | Active Substance (a.s) | Content a.s. [g/L] | Dose | BBCH * |
---|---|---|---|---|
C | - | - | - | - |
GSS | - | - | 3 t/ha | - |
F | thiophanate-methyl azoxystrobin | 500 250 | 1.4 L/ha 0.8 L/ha | 56–58 71–73 |
H | MCPA dicamba | 300 40 | 2.0 L/ha | 21–23 |
F + H | MCPA dicamba thiophanate-methyl azoxystrobin | 300 | 2.0 L/ha | 21–23 |
40 | ||||
500 | 1.4 L/ha | 56–58 | ||
250 | 0.8 L/ha | 71–73 | ||
GSS + F | thiophanate-methyl azoxystrobin | 500 | 1.4 L/ha | 56–58 |
250 | 0.8 L/ha | 71–73 | ||
GSS + H | MCPA dicamba | 300 | 2.0 L/ha | 21–23 |
40 | ||||
GSS + F + H | MCPA dicamba thiophanate-methyl azoxystrobin | 300 | 2.0 L/ha | 21–23 |
40 | ||||
500 | 1.4 L/ha | 56–58 | ||
250 | 0.8 L/ha | 71–73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wydro, U.; Jankowska, M.; Wołejko, E.; Kondzior, P.; Łozowicka, B.; Kaczyński, P.; Rodziewicz, J.; Janczukowicz, W.; Pietryczuk, A.; Cudowski, A.; et al. Changes in Soil Biological Properties after Sewage Sludge and Pesticide Application in Wheat Cultivation. Appl. Sci. 2022, 12, 11452. https://doi.org/10.3390/app122211452
Wydro U, Jankowska M, Wołejko E, Kondzior P, Łozowicka B, Kaczyński P, Rodziewicz J, Janczukowicz W, Pietryczuk A, Cudowski A, et al. Changes in Soil Biological Properties after Sewage Sludge and Pesticide Application in Wheat Cultivation. Applied Sciences. 2022; 12(22):11452. https://doi.org/10.3390/app122211452
Chicago/Turabian StyleWydro, Urszula, Magdalena Jankowska, Elżbieta Wołejko, Paweł Kondzior, Bożena Łozowicka, Piotr Kaczyński, Joanna Rodziewicz, Wojciech Janczukowicz, Anna Pietryczuk, Adam Cudowski, and et al. 2022. "Changes in Soil Biological Properties after Sewage Sludge and Pesticide Application in Wheat Cultivation" Applied Sciences 12, no. 22: 11452. https://doi.org/10.3390/app122211452
APA StyleWydro, U., Jankowska, M., Wołejko, E., Kondzior, P., Łozowicka, B., Kaczyński, P., Rodziewicz, J., Janczukowicz, W., Pietryczuk, A., Cudowski, A., & Jabłońska-Trypuć, A. (2022). Changes in Soil Biological Properties after Sewage Sludge and Pesticide Application in Wheat Cultivation. Applied Sciences, 12(22), 11452. https://doi.org/10.3390/app122211452