Artificial Intelligence, Sensors and Vital Health Signs: A Review
Abstract
:1. Introduction
2. Related Works
3. Review Method
Conducting the Systematic Literature Review
- Initial selection: This step includes filtering the “titles, abstracts, and keywords of potential primary articles”. At this stage, 1245 articles were retrieved, including conference paper proceedings, journal articles, book chapters, books, symposiums, research reports, etc. The search string was applied to address digital databases from 2010 to 2022.
- Final selection: In this step, inclusion/exclusion conditions were used to include important articles and exclude irrelevant ones. In the course of the literature search, a wide range of papers related to the IoT in healthcare delivery were obtained, and regardless of the relevant proceedings and other research reports acquired, only articles found in journal citation reports (JCR) indexed databases were considered based on their full text. At the final selection, 137 JCR-indexed articles were retrieved.
4. Internet of Things (IoT) for Healthcare Delivery
4.1. Application of IoT in Healthcare
- (a)
- Monitoring of physiological parameters
- (b)
- Rehabilitation systems
- (c)
- Skin pathologies and dietary assessment
- (d)
- Epidemic diseases treatment and location-aware solutions
- (e)
- Diabetes treatment
4.2. Communication Technologies for IoT in Healthcare
4.3. IoT and Vital Health Signs Monitoring
5. Artificial Intelligence (AI) for Healthcare Delivery
5.1. Application of AI in Vital Health Signs Monitoring
- (a)
- Diagnosis
- (b)
- Prognosis and spread control
- (c)
- Assistive systems
- (d)
- Monitoring
5.2. Intelligent Algorithms for Vital Signs Monitoring
5.3. AI/ML Models Taxonomy Used in Healthcare Systems
5.4. Technical Challenges of AI/ML in Healthcare Delivery
6. Discussion and Future Research Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Putri, A.O.; Ali, M.A.; Saad, M.; Hidayat, S.S. Wearable sensor and internet of things technology for better medical science: A review. Int. J. Eng. Technol. 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Fouad, H.; Hassanein, A.S.; Soliman, A.M.; Al-Feel, H. Analyzing patient health information based on IoT sensor with AI for improving patient assistance in the future direction. Measurement 2020, 159, 107757. [Google Scholar] [CrossRef]
- Gupta, V.; Ingle, A.; Gaikwad, D.; Vibhute, M. Patient Health Monitoring and Diagnosis Using IoT and Machine Learning. In Inventive Communication and Computational Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 295–307. [Google Scholar]
- Kavidha, V.; Gayathri, N.; Kumar, S.R. AI, IoT and Robotics in the Medical and Healthcare Field. AI IoT-Based Intell. Autom. Robot. 2021, 15, 165–187. [Google Scholar]
- Thakare, V.; Khire, G.; Kumbhar, M. Artificial Intelligence (AI) And Internet Of Things (IoT) In Healthcare: Opportunities And Challenges. SPAST Abstracts 2021, 107, 7941. [Google Scholar] [CrossRef]
- Prithi, S.; Poongodi, T.; Sumathi, D.; Suresh, P. Real-time remote health monitoring using IoT sensors. In Electronic Devices, Circuits, and Systems for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 481–501. [Google Scholar]
- Dang, L.M.; Piran, M.; Han, D.; Min, K.; Moon, H. A survey on internet of things and cloud computing for healthcare. Electronics 2019, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Isravel, D.P.; Silas, S. A Comprehensive Review on the Emerging IoT-Cloud based Technologies for Smart Healthcare. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; IEEE: New York, NY, USA, 2020; pp. 606–611. [Google Scholar]
- Singh, B.; Bhattacharya, S.; Chowdhary, C.; Jat, D. A review on internet of things and its applications in healthcare. J. Chem. Pharm. Sci. 2017, 10, 447–452. [Google Scholar]
- Kristoffersson, A.; Lindén, M. A systematic review on the use of wearable body sensors for health monitoring: A qualitative synthesis. Sensors 2020, 20, 1502. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, M.C.; Vlaskamp, L.B.; Posthuma, L.M.; Visscher, M.J.; Breteler, M.J.; Hermens, H.J.; Kalkman, C.J.; Preckel, B. Adaptive threshold-based alarm strategies for continuous vital signs monitoring. J. Clin. Monit. Comput. 2022, 36, 407–417. [Google Scholar] [CrossRef]
- Misbahuddin, S.; Zubairi, J.A.; Alahdal, A.R.; Malik, M.A. IoT-based ambulatory vital signs data transfer system. J. Comput. Netw. Commun. 2018, 2018, 4071474. [Google Scholar] [CrossRef]
- Mercuri, M.; Lorato, I.R.; Liu, Y.-H.; Wieringa, F.; van Hoof, C.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, P.; Jin, H.; Ma, J.; Qin, L. Vital sign measurement in telemedicine rehabilitation based on intelligent wearable medical devices. Ieee Access 2019, 7, 54819–54823. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Gholamzadeh, M.; Saeedi, S.; Rezayi, S. The application of wearable smart sensors for monitoring the vital signs of patients in epidemics: A systematic literature review. J. Ambient. Intell. Humaniz. Comput. 2020. [Google Scholar] [CrossRef]
- Ahmed, M.U. An intelligent healthcare service to monitor vital signs in daily life—A case study on health-iot. Int. J. Eng. Res. Appl. (IJERA) 2017, 7, 43–55. [Google Scholar]
- Al Bassam, N.; Hussain, S.A.; al Qaraghuli, A.; Khan, J.; Sumesh, E.; Lavanya, V. IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Inform. Med. Unlocked 2021, 24, 100588. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.U.; Hossain, M.S. Edge intelligence and Internet of Things in healthcare: A survey. IEEE Access 2020, 9, 45–59. [Google Scholar] [CrossRef]
- Da Costa, C.A.; Pasluosta, C.F.; Eskofier, B.; da Silva, D.B.; Righi, R.d. Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artif. Intell. Med. 2018, 89, 61–69. [Google Scholar] [CrossRef]
- Elliott, M.; Coventry, A. Critical care: The eight vital signs of patient monitoring. Br. J. Nurs. 2012, 21, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Al-Dhaen, F.; Hou, J.; Rana, N.P.; Weerakkody, V. Advancing the Understanding of the Role of Responsible AI in the Continued Use of IoMT in Healthcare. Inf. Syst. Front. 2021. [Google Scholar] [CrossRef]
- VRathi, V.K.; Rajput, N.K.; Mishra, S.; Grover, B.A.; Tiwari, P.; Jaiswal, A.K.; Hossain, M.S. An edge AI-enabled IoT healthcare monitoring system for smart cities. Comput. Electr. Eng. 2021, 96, 107524. [Google Scholar]
- Haghi, M.; Thurow, K.; Stoll, R. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthc. Inform. Res. 2017, 23, 4–15. (In English) [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaroop, K.N.; Chandu, K.; Gorrepotu, R.; Deb, S. A health monitoring system for vital signs using IoT. Internet Things 2019, 5, 116–129. [Google Scholar] [CrossRef]
- Topol, E.J. Transforming medicine via digital innovation. Sci. Transl. Med. 2010, 2, 16cm4. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, Z.; Saber, M.; Bagheri, M.; Mahdavinia, G.R. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. J. Pest. Sci. 2018, 91, 837–848. [Google Scholar] [CrossRef]
- Saheb, T.; Izadi, L. Paradigm of IoT big data analytics in the healthcare industry: A review of scientific literature and mapping of research trends. Telemat. Inform. 2019, 41, 70–85. [Google Scholar] [CrossRef]
- Usak, M.; Kubiatko, M.; Shabbir, S.M.; Dudnik, V.O.; Jermsittiparsert, K.; Rajabion, L. Health care service delivery based on the Internet of things: A systematic and comprehensive study. Int. J. Commun. Syst. 2020, 33, 4179–4196. [Google Scholar] [CrossRef]
- Zou, N.; Liang, S.; He, D. Issues and challenges of user and data interaction in healthcare-related IoT. Libr. Hi Tech 2020, 38, 769–782. [Google Scholar] [CrossRef]
- Santos, M.A.G.; Munoz, R.; Olivares, R.; Filho, P.P.R.; Ser, J.D.; Albuquerque, V.H.C.d. Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook. Inf. Fusion 2020, 53, 222–239. [Google Scholar] [CrossRef]
- Kashani, M.H.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A systematic review of IoT in healthcare: Applications, techniques, and trends. J. Netw. Comput. Appl. 2021, 192, 103164. [Google Scholar] [CrossRef]
- Kaieski, N.; da Costa, C.A.; Righi, R.d.; Lora, P.S.; Eskofier, B. Application of artificial intelligence methods in vital signs analysis of hospitalized patients: A systematic literature review. Appl. Soft Comput. 2020, 96, 106612. [Google Scholar] [CrossRef]
- Bolhasani, H.; Mohseni, M.; Rahmani, A.M. Deep learning applications for IoT in health care: A systematic review. Inform. Med. Unlocked 2021, 23, 100550. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E.; Elhoseny, M.; Sangaiah, A.K.; Muhammad, K. The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4151–4166. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Dinesh, K.; Shishvan, O.R.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A Survey of Healthcare Internet of Things (HIoT): A Clinical Perspective. IEEE Internet Things J. 2020, 7, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Kadhim, K.T.; Alsahlany, A.M.; Wadi, S.M.; Kadhum, H.T. An Overview of Patient’s Health Status Monitoring System Based on Internet of Things (IoT). Wirel. Pers. Commun. 2020, 114, 2235–2262. [Google Scholar] [CrossRef]
- Oniani, S.; Marques, G.; Barnovi, S.; Pires, I.M.; Bhoi, A.K. Artificial Intelligence for Internet of Things and Enhanced Medical Systems. In Bio-Inspired Neurocomputing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 43–59. [Google Scholar]
- Bonnevie, T.; Gravier, F.E.; Elkins, M.; Dupuis, J.; Prieur, G.; Combret, Y.; Viacroze, C.; Debeaumont, D.; Robleda-Quesada, A.; Quieffin, J.; et al. People undertaking pulmonary rehabilitation are willing and able to provide accurate data via a remote pulse oximetry system: A multicentre observational study. J. Physiother. 2019, 65, 28–36. [Google Scholar] [CrossRef]
- Caulfield, B.; Kaljo, I.; Donnelly, S. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1765–1768. [Google Scholar] [CrossRef]
- Naranjo-Hernández, D.; Talaminos-Barroso, A.; Reina-Tosina, J.; Roa, L.M.; Barbarov-Rostan, G.; Cejudo-Ramos, P.; Márquez-Martín, E.; Ortega-Ruiz, F. Smart Vest for Respiratory Rate Monitoring of COPD Patients Based on Non-Contact Capacitive Sensing. Sensors 2018, 18, 2144. Available online: https://www.mdpi.com/1424–8220/18/7/2144 (accessed on 20 August 2022). [CrossRef] [Green Version]
- Huang, A.; Chen, C.; Bian, K.; Duan, X.; Chen, M.; Gao, H.; Meng, C.; Zheng, Q.; Zhang, Y.; Jiao, B.; et al. WE-CARE: An Intelligent Mobile Telecardiology System to Enable mHealth Applications. IEEE J. Biomed. Health Inform. 2014, 18, 693–702. [Google Scholar] [CrossRef]
- Javaid, A.Q.; Chang, I.S.; Mihailidis, A. Ballistocardiogram Based Identity Recognition: Towards Zero-Effort Health Monitoring in an Internet-of-Things (IoT) Environment. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 3326–3329. [Google Scholar] [CrossRef]
- Dong, B.; Biswas, S. Meal-time and duration monitoring using wearable sensors. Biomed. Signal Process. Control 2017, 32, 97–109. [Google Scholar] [CrossRef]
- Alshurafa, N.; Kalantarian, H.; Pourhomayoun, M.; Sarin, S.; Liu, J.J.; Sarrafzadeh, M. Non-invasive monitoring of eating behavior using spectrogram analysis in a wearable necklace. In Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Seattle, WA, USA, 8–10 October 2014; pp. 71–74. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Magaña-Espinoza, P.; Aquino-Santos, R.; Cárdenas-Benítez, N.; Aguilar-Velasco, J.; Buenrostro-Segura, C.; Edwards-Block, A.; Medina-Cass, A. WiSPH: A Wireless Sensor Network-Based Home Care Monitoring System. Sensors 2014, 14, 7096–7119. Available online: https://www.mdpi.com/1424-8220/14/4/7096 (accessed on 14 July 2022). [CrossRef] [PubMed] [Green Version]
- Villarrubia, G.; Bajo, J.; de Paz, J.F.; Corchado, J.M. Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care. Sensors 2014, 14, 9900. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. Real-Time Signal Quality-Aware ECG Telemetry System for IoT-Based Health Care Monitoring. IEEE Internet Things J. 2017, 4, 815–823. [Google Scholar] [CrossRef]
- Park, J.; Samarakoon, S.; Bennis, M.; Debbah, M. Wireless Network Intelligence at the Edge. Proc. IEEE 2019, 107, 2204–2239. [Google Scholar] [CrossRef] [Green Version]
- Mathur, N.; Paul, G.; Irvine, J.; Abuhelala, M.; Buis, A.; Glesk, I. A Practical Design and Implementation of a Low Cost Platform for Remote Monitoring of Lower Limb Health of Amputees in the Developing World. IEEE Access 2016, 4, 7440–7451. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, G.; Alhamid, M.F.; Alsulaiman, M.; Gupta, B. Edge Computing with Cloud for Voice Disorder Assessment and Treatment. IEEE Commun. Mag. 2018, 56, 60–65. [Google Scholar] [CrossRef]
- Monteiro, A.; Dubey, H.; Mahler, L.; Yang, Q.; Mankodiya, K. Fit: A Fog Computing Device for Speech Tele-Treatments. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St Louis, MO, USA, 18–20 May 2016; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Dey, S.; Mondal, J.; Mukherjee, A. Offloaded Execution of Deep Learning Inference at Edge: Challenges and Insights. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 855–861. [Google Scholar] [CrossRef]
- Masip-Bruin, X.; Marín-Tordera, E.; Alonso, A.; Garcia, J. Fog-to-cloud Computing (F2C): The key technology enabler for dependable e-health services deployment. In Proceedings of the 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Vilanova i la Geltrú, Spain, 20–22 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Siegerink, B.; Weber, J.; Ahmadi, M.; Eckardt, K.U.; Edelmann, F.; Endres, M.; Gerhardt, H.; Haubold, K.; Hübner, N.; Landmesser, U.; et al. Disease overarching mechanisms that explain and predict outcome of patients with high cardiovascular risk: Rationale and design of the Berlin Long-term Observation of Vascular Events (BeLOVE) study. medRxiv 2019, 19000380. [Google Scholar] [CrossRef]
- Maghded, H.S.; Ghafoor, K.Z.; Sadiq, A.S.; Curran, K.; Rawat, D.B.; Rabie, K. A Novel AI-enabled Framework to Diagnose Coronavirus COVID-19 using Smartphone Embedded Sensors: Design Study. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 180–187. [Google Scholar] [CrossRef]
- Bierzynski, K.; Escobar, A.; Eberl, M. Cloud, fog and edge: Cooperation for the future? In Proceedings of the 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; pp. 62–67. [Google Scholar] [CrossRef]
- Kaur, A.; Jasuja, A. Health monitoring based on IoT using Raspberry PI. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 1335–1340. [Google Scholar] [CrossRef]
- Yahyaoui, A.; Jamil, A.; Rasheed, J.; Yesiltepe, M. A Decision Support System for Diabetes Prediction Using Machine Learning and Deep Learning Techniques. In Proceedings of the 2019 1st International Informatics and Software Engineering Conference (UBMYK), Ankara, Turkey, 6–7 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Priyadarshini, R.; Barik, R.K.; Dubey, H. DeepFog: Fog Computing-Based Deep Neural Architecture for Prediction of Stress Types, Diabetes and Hypertension Attacks. Computation 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, L.; Song, H.; Cao, X. Ubiquitous WSN for Healthcare: Recent Advances and Future Prospects. IEEE Internet Things J. 2014, 1, 311–318. [Google Scholar] [CrossRef]
- Chakkor, S.; Cheikh, E.A.; Baghouri, M.; Hajraoui, A. Comparative performance analysis of wireless communication protocols for intelligent sensors and their applications. arXiv 2014, arXiv:1409.6884, preprint. [Google Scholar]
- Kuhn, M.J.; Mahfouz, M.R.; Rowe, N.; Elkhouly, E.; Turnmire, J.; Fathy, A.E. Ultra wideband 3-D tracking of multiple tags for indoor positioning in medical applications requiring millimeter accuracy. In Proceedings of the 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Santa Clara, CA, USA, 15–18 January 2012; pp. 57–60. [Google Scholar] [CrossRef]
- Gomez, C.; Oller, J.; Paradells, J. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors 2012, 12, 11734–11753. Available online: https://www.mdpi.com/1424-8220/12/9/11734 (accessed on 28 July 2022). [CrossRef] [Green Version]
- Antar, F.; Jain, M.; Dugyala, H.; Nelluri, D.; Morelos-Zaragoza, R. Reliability improvements to healthcare patient RFID tracking with multiple tags. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Coskun, V.; Ozdenizci, B.; Ok, K. A Survey on Near Field Communication (NFC) Technology. Wirel. Pers. Commun. 2013, 71, 2259–2294. [Google Scholar] [CrossRef]
- López, P.; Fernández, D.; Jara, A.J.; Skarmeta, A.F. Survey of Internet of Things Technologies for Clinical Environments. In Proceedings of the 2013 27th International Conference on Advanced Information Networking and Applications Workshops, Barcelona, Spain, 25–28 March 2013; pp. 1349–1354. [Google Scholar] [CrossRef]
- Mehmood, W.; Hassan, A.; Tabish, R.; Touati, F.; Mnaouer, A.B.; Gaabab, B. Performance evaluation of 6LOWPAN based networks for ubiquitous health monitoring system. In Proceedings of the International Conference on Wireless Networks (ICWN), Las Vegas, NV, USA, 21–24 July 2014; The Steering Committee of The World Congress in Computer Science, Computer. p. 1. [Google Scholar]
- Fieler, V.K.; Jaglowski, T.; Richards, K. Eliminating errors in vital signs documentation. CIN Comput. Inform. Nurs. 2013, 31, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Aminian, M.; Naji, H.R. A hospital healthcare monitoring system using wireless sensor networks. J. Health Med. Inform. 2013, 4, 121. [Google Scholar] [CrossRef] [Green Version]
- Jara, A.J.; Zamora-Izquierdo, M.A.; Skarmeta, A.F. Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE J. Sel. Areas Commun. 2013, 31, 47–65. [Google Scholar] [CrossRef]
- Aung, M.S.H.; Alquaddoomi, F.; Hsieh, C.K.; Rabbi, M.; Yang, L.; Pollak, J.P.; Estrin, D.; Choudhury, T. Leveraging multi-modal sensing for mobile health: A case review in chronic pain. IEEE J. Sel. Top. Signal Process. 2016, 10, 962–974. [Google Scholar] [CrossRef] [Green Version]
- Shuaibu, A.N.; Dajab, D.D.; Usman, F. Heart Rate Measurement Using Non-invasive Sparse Signal Approach. In Proceedings of the 2020 8th International Conference on Intelligent and Advanced Systems (ICIAS), Kuching, Malaysia, 13–15 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Bharadwaj, H.K.; Agarwal, A.; Chamola, V.; Lakkaniga, N.R.; Hassija, V.; Guizani, M.; Sikdar, B. A Review on the Role of Machine Learning in Enabling IoT Based Healthcare Applications. IEEE Access 2021, 9, 38859–38890. [Google Scholar] [CrossRef]
- Gupta, A.; Yadav, S.; Shahid, S.; Venkanna, U. HeartCare: IoT Based Heart Disease Prediction System. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; pp. 88–93. [Google Scholar] [CrossRef]
- Lunardi, G.M.; Al Machot, F.; Shekhovtsov, V.A.; Maran, V.; Machado, G.M.; Machado, A.; Mayr, H.C.; de Oliveira, J.P.M. IoT-based human action prediction and support. Internet Things 2018, 3-4, 52–68. [Google Scholar] [CrossRef]
- Li, X.; Samuel, O.W.; Zhang, X.; Wang, H.; Fang, P.; Li, G. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. J. Neuroeng. Rehabil. 2017, 14, 2. (In English) [Google Scholar] [CrossRef] [Green Version]
- Riaz, F.; Azad, M.A.; Arshad, J.; Imran, M.; Hassan, A.; Rehman, S. Pervasive blood pressure monitoring using Photoplethysmogram (PPG) sensor. Future Gener. Comput. Syst. 2019, 98, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Acharya, N.V.V.; Rani, K.S. Modern Health Monitoring and Analysis Using Iot Technology. Turk. Online J. Qual. Inq. (TOJQI) 2021, 12, 4961–4972. [Google Scholar]
- Clifton, L.; Clifton, D.A.; Watkinson, P.J.; Tarassenko, L. Identification of patient deterioration in vital-sign data using one-class support vector machines. In Proceedings of the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 8–21 September 2011; IEEE: New York, NY, USA, 2011; pp. 125–131. [Google Scholar]
- Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M. Machine Learning: An Artificial Intelligence Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arxiv 2015, arXiv:1511.03677. [Google Scholar]
- Kaur, P.; Kumar, R.; Kumar, M. A healthcare monitoring system using random forest and internet of things (IoT). Multimed. Tools Appl. 2019, 78, 19905–19916. [Google Scholar] [CrossRef]
- Martis, R.J.; Gurupur, V.P.; Lin, H.; Islam, A.; Fernandes, S.L. Recent advances in Big Data Analytics, Internet of Things and Machine Learning. Future Gener. Comput. Syst. 2018, 88, 696–698. [Google Scholar] [CrossRef]
- Guan, Z.; Lv, Z.; Du, X.; Wu, L.; Guizani, M. Achieving data utility-privacy tradeoff in Internet of Medical Things: A machine learning approach. Future Gener. Comput. Syst. 2019, 98, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence—Enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef]
- Wu, X.; Liu, C.; Wang, L.; Bilal, M. Internet of things-enabled real-time health monitoring system using deep learning. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Babu, G.C.; Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 2018, 86, 527–534. [Google Scholar] [CrossRef]
- Heidari, A.A.; Faris, H.; Aljarah, I.; Mirjalili, S. An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput. 2019, 23, 7941–7958. [Google Scholar] [CrossRef]
- Li, B.; Wen, T.; Hu, C.; Zhou, B. Power System Transient Stability Prediction Algorithm Based on ReliefF and LSTM. In International Conference on Artificial Intelligence and Security; Sun, X., Pan, Z., Bertino, E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 74–84. [Google Scholar]
- Fki, Z.; Ammar, B.; Ayed, M.B. Machine learning with internet of things data for risk prediction: Application in ESRD. In Proceedings of the 2018 12th International Conference on Research Challenges in Information Science (RCIS), Nantes, France, 29–31 May 2018; IEEE: Nantes, France, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ghazal, T.M.; Hasan, M.K.; Alshurideh, M.T.; Alzoubi, H.M.; Ahmad, M.; Akbar, S.S.; Al Kurdi, B.; Akour, I.A. IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review. Future Internet 2021, 13, 218. [Google Scholar] [CrossRef]
- Yao, C.; Wu, S.; Liu, Z.; Li, P. A deep learning model for predicting chemical composition of gallstones with big data in medical internet of things. Future Gener. Comput. Syst. 2019, 94, 140–147. [Google Scholar] [CrossRef]
- Troisi, R.I.; Pegoraro, F.; Giglio, M.C.; Rompianesi, G.; Berardi, G.; Tomassini, F.; De Simone, G.; Aprea, G.; Montalti, R.; De Palma, G.D. Robotic approach to the liver: Open surgery in a closed abdomen or laparoscopic surgery with technical constraints? Surg. Oncol. 2019, 33, 239–248. [Google Scholar] [CrossRef]
- De Momi, E.; Ferrigno, G. Robotic and artificial intelligence for keyhole neurosurgery: The ROBOCAST project, a multi-modal autonomous path planner. Proc. Inst. Mech. Eng. H. 2010, 224, 715–727. [Google Scholar] [CrossRef]
- Panesar, S.; Cagle, Y.; Chander, D.; Morey, J.; Fernandez-Miranda, J.; Kliot, M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019, 270, 223–226. [Google Scholar] [CrossRef]
- Chen, M.; Yang, J.; Zhou, J.; Hao, Y.; Zhang, J.; Youn, C.-H. 5G-smart diabetes: Toward personalized diabetes diagnosis with healthcare big data clouds. IEEE Commun. Mag. 2018, 56, 16–23. [Google Scholar] [CrossRef]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personlized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef]
- Nayyar, A.; Puri, V.; Nguyen, N.G. BioSenHealth 1.0: A novel internet of medical things (IoMT)-based patient health monitoring system. In International Conference on Innovative Computing and Communications; Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I., Eds.; Springer: Singapore, 2019; pp. 155–164. [Google Scholar] [CrossRef]
- Commandeur, F.; Goeller, M.; Razipour, A.; Cadet, S.; Hell, M.M.; Kwiecinski, J.; Chen, X.; Chang, H.J.; Marwan, M.; Achenbach, S.; et al. Fully automated CT quantification of epicardial adipose tissue by deep learning: A multicenter study. Radiol. Artif. Intell. 2019, 1, e190045. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, Z.; Kale, D.; Li, W.; Bahadori, M.T.; Liu, Y. Deep Computational Phenotyping. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015. [Google Scholar] [CrossRef]
- Brink, H.; Richards, J.W.; Fetherolf, M. Real-World Machine Learning; Manning: Shelter Island, NY, USA, 2017. [Google Scholar]
- Cielen, D.; Meysman, A.; Ali, M. Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools; Manning Publications: Shelter Island, NY, USA, 2016. [Google Scholar]
- Kumar, P.M.; Devi Gandhi, U. A novel three-tier internet of things architecture with machine learning algorithm for early detection of heart diseases. Comput. Electr. Eng. 2018, 65, 222–235. [Google Scholar] [CrossRef]
- Coats, B.; Acharya, S. Bridging Electronic Health Record Access to the Cloud. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Washington, DC, USA, 6–9 January 2014; pp. 2948–2957. [Google Scholar] [CrossRef]
- Dastjerdi, A.V.; Buyya, R. Fog computing: Helping the Internet of Things realize its potential. Computer 2016, 49, 112–116. [Google Scholar] [CrossRef]
- Soceanu, A.; Egner, A.; Moldoveanu, F. Towards interoperability of eHealth system networked components. In Proceedings of the 2013 19th International Conference on Control Systems and Computer Science, Bucharest, Romania, 29–31 May 2013; IEEE: New York, NY, USA, 2013; pp. 147–154. [Google Scholar]
- Sachdeva, S.; Bhalla, S. Semantic interoperability in standardized electronic health record databases. J. Data Inf. Qual. (JDIQ) 2012, 3, 1–37. [Google Scholar] [CrossRef]
- Kim, S.; Kim, W.; Park, R.W. A Comparison of Intensive Care Unit Mortality Prediction Models through the Use of Data Mining Techniques. Healthc Inf. Res. 2011, 17, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Van der Ploeg, T.; Austin, P.C.; Steyerberg, E.W. Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Med. Res. Methodol. 2014, 14, 137. [Google Scholar] [CrossRef] [Green Version]
- Poucke, S.V.; Zhang, Z.; Schmitz, M.; Vukicevic, M.; Laenen, M.V.; Celi, L.A.; Deyne, C.D. Scalable predictive analysis in critically ill patients using a visual open data analysis platform. PLoS ONE 2016, 11, e0145791. [Google Scholar] [CrossRef]
- Aldahiri, A.; Alrashed, B.; Hussain, W. Trends in Using IoT with Machine Learning in Health Prediction System. Forecasting 2021, 3, 12. [Google Scholar] [CrossRef]
- Baig, M.M.; Gholamhosseini, H. Smart health monitoring systems: An overview of design and modeling. J. Med. Syst. 2013, 37, 9898. [Google Scholar] [CrossRef]
- Rong, G.; Mendez, A.; Assi, E.B.; Zhao, B.; Sawan, M. Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering 2020, 6, 291–301. [Google Scholar] [CrossRef]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Ameri Sianaki, O.; Yousefi, A.; Tabesh, A.R.; Mahdavi, M. Machine Learning Applications: The Past and Current Research Trend in Diverse Industries. Inventions 2019, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Adewole, K.S.; Akintola, A.G.; Jimoh, R.G.; Mabayoje, M.A.; Jimoh, M.K.; Usman-Hamza, F.E.; Balogun, A.O.; Sangaiah, A.K.; Ameen, A.O. Cloud-based IoMT framework for cardiovascular disease prediction and diagnosis in personalized E-health care. In Intelligent IoT Systems in Personalized Health Care; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Hiran, K.K.; Jain, R.K.; Lakhwani, K.; Doshi, R. Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition); BPB Publications: Noida, India, 2021. [Google Scholar]
- Balogun, A.O.; Basri, S.; Capretz, L.F.; Mahamad, S.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Alazzawi, A.K.; Bajeh, A.O.; Kumar, G. Software Defect Prediction Using Wrapper Feature Selection Based on Dynamic Re-Ranking Strategy. Symmetry 2021, 13, 2166. [Google Scholar] [CrossRef]
- Balogun, A.O.; Basri, S.; Mahamad, S.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G. A novel rank aggregation-based hybrid multifilter wrapper feature selection method in software defect prediction. Comput. Intell. Neurosci. 2021, 2021, 5069016. [Google Scholar] [CrossRef]
- Alsariera, Y.A.; Balogun, A.O.; Adeyemo, V.E.; Tarawneh, O.H.; Mojeed, H.A. Intelligent tree-based ensemble approaches for phishing website detection. J. Eng. Sci. Technol 2022, 17, 563–582. [Google Scholar]
- Oladepo, A.G.; Bajeh, A.O.; Balogun, A.O.; Mojeed, H.A.; Salman, A.A.; Bako, A.I. Heterogeneous Ensemble with Combined Dimensionality Reduction for Social Spam Detection. Int. J. Interact. Mob. Technol. 2021, 15, 84–103. [Google Scholar] [CrossRef]
- Usman-Hamza, F.; Atte, A.; Balogun, A.; Mojeed, H.; Bajeh, A.; Adeyemo, V. Impact of feature selection on classification via clustering techniques in software defect prediction. J. Comput. Sci. Appl. 2019, 26, 73–88. [Google Scholar] [CrossRef]
- Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement learning, fast and slow. Trends Cogn. Sci. 2019, 23, 408–422. [Google Scholar] [CrossRef]
- Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Balogun, A.; Oladele, R.; Mojeed, H.; Amin-Balogun, B.; Adeyemo, V.E.; Aro, T.O. Performance analysis of selected clustering techniques for software defects prediction. Afr. J. Comput. ICT 2019, 12, 30–42. [Google Scholar]
- Muneer, A.; Taib, S.M.; Fati, S.M.; Balogun, A.O.; Aziz, I.A. A Hybrid deep learning-based unsupervised anomaly detection in high dimensional data. Comput. Mater. Contin. 2022, 70, 6073–6088. [Google Scholar] [CrossRef]
- Imam, A.A.; Basri, S.; Ahmad, R. Data Extraction Formulation for Efficient Data Synchronization Between Mobile Databases and Server-Side Database. Adv. Sci. Lett. 2018, 2, 1066–1070. [Google Scholar] [CrossRef]
- Zulkafli, A.Z.; Basri, S.; Ahmad, R.; Imam, A.B. Image synchronization gateway for NoSQL document database and server-side SQL database in mobile environment. AIP Conf. Proc. 2018, 2016, 020157. [Google Scholar] [CrossRef]
- Imam, A.A.; Basri, S.; Ahmad, R.; Gilal, A.R. Data synchronization model for heterogeneous mobile databases and server-side database. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 090172. [Google Scholar] [CrossRef]
References | Article Type | Taxonomy | Year Covered |
---|---|---|---|
Ahmadi et al. [27], 2018 | SLR | “Security in IoT e-healthcare based on the cloud storage” | 2009–2017 |
Saheb and Izadi [28], 2019 | SLR | “Big data analytics and fog computing in IoHT” | 2014–2018 |
Usak et al. [29], 2020 | SLR | “IoT-based healthcare service delivery” | 2010–2018 |
Zou et al. [30], 2020 | SLR | “User and data interaction in IoHT” | 2018–2019 |
Sabtos et al. [31], 2020 | SLR | “Heart monitoring system using IoT” | 2015–2018 |
Kashani et al. [32], 2021 | SLR | “IoT in healthcare” | 2015–2020 |
Kaieski et al. [33], 2020 | SLR | Application of AI methods and Vital Signs | 2008–2018 |
Bolhasani et al. [34], 2021 | SLR | “Deep learning applications for IoT in healthcare” | 2010–2020 |
Darwish et al. [35], 2017 | Survey | “IoT and cloud computing” | Not mentioned |
Habibzadeh et al. [36], 2020 | Survey | “Healthcare IoT” | Not mentioned |
Qadri et al. [37], 2020 | Survey | “Emerging technologies in the future of IoHT” | Not mentioned |
Kadhim et al. [38], 2020 | Survey | “Patient’s health monitoring system based on IoT” | Not mentioned |
Our Study | SLR | AI-IoT and Vital signs in healthcare | 2010–2022 |
Citation | Article Category | Research Design | No. of Subjects | Sensor Category |
---|---|---|---|---|
Bonnevie et al. [40], 2019 | Asthma/COPD | Observational | 104 | VHS |
Caulfield et al. [41], 2014 | Asthma/COPD | Observational | 10 | Physical activity |
Naranjo-Hernandez et al. [42], 2018 | Asthma/COPD | Observational | 2 | VHS |
Huang et al. [43], 2014 | Cardiovascular diseases | Observational | 225 | Electrocardiogram (ECG) |
Javaid et al. [44] 2018 | Cardiovascular diseases | Observational | 60 | Electrocardiogram (ECG) |
Dong and Biswas [45], 2017 | Diabetes and nutrition | Observational | 14 | Physical activity, VHS |
Alshurafa [46], 2015 | Diabetes and nutrition | Observational | 10 | Physical activity, VHS |
Interconnection Protocol | Range | Data Rate | Spectrum |
---|---|---|---|
WiFi | 200–100 m | 50–90 Mbps | 2.4/5 GHz |
WiMax | 50 Km | 10–376 Mbps | 2–11 GHz |
GSM/EDGE | <35 Km | 270 kbps | 900–1800 MHz |
UMTS/CDMA | <30 Km | 2 Mbps | 1885–2200 MHz |
LTE | <100 Km | <300 Mbps | 700–2500 MHz |
Infrared | 1–10 m | 2.4 kbps–1 Gbps | 300 GHz-430 THz |
ZigBee | 10–20 m | 20–256 kbps | 2.4 GHz/84–915 MHz |
UWB | 2–30 m | 110 Mbps | >500 MHz |
Bluetooth | <100 m | 2.1 Mbps | 2.4 GHz |
BLE | <50 m | 1 Mbps | 2.4 GHz |
NFC | <10 cm | 106–424 kbps | 13.56 MHz |
RFID | 5 cm–2 m | 40–640 kbps | 120–150 kHz |
NFC | <10 cm | 106–424 kbps | 13.56 MHz |
6LoWPAN | <50 m | 250 kbps | 868 Hz/902 MHz/2.4 GHz |
Citation | AI/ML Methods | Application | Description | Function |
---|---|---|---|---|
Michalski et al. [89], 2019 | “RF/SVM” | “Heart disease diagnosis” | “Creation of classification and regression analysis” | “Develop a hyperplane. Use in pattern analysis puzzles and nonlinear regression” |
Martis et al. [90], 2018 | “NB” | “Heart disease diagnosis” | “Probabilistic classifiers” | “Creation of classification, sentiment analysis, spam filtering, and news classification” |
Guan et al. [91], 2019 | “Cluster analysis and efficient differentially private data clustering scheme” | “Heart disease diagnosis” | “Classify a sample of subjects (or objects) based on a set of measured variables in different groups” | “Interaction using the K-means algorithm” |
Attia et al. [92], 2019 | “Convolutional neural network (CNN)” | “Heart disease diagnosis” | “Class of deep neural network (DNNs), most commonly applied to analyse visual imagery. Known as shift invariant or space invariant artificial neural networks (SIANN)” | “Classify patients with ventricular dysfunction” |
Wu et. al. [93], 2019 | “DL” | “Heart disease diagnosis” | “DNN learning and a prediction mode” | “Enable machines to process data with a nonlinear approach” |
Kumar et al. [94], 2018 | “Recurrent fuzzy neural network” | “Heart disease diagnosis” | “Neural Classifier” | “Using DPSS to help prevention healthcare services and data security” |
Heidari et al. [95], 2019 | “Grasshopper optimization” | “Heart disease diagnosis” | “Gravity force and the wind advection AI” | “Multi-linear perceptron (MLP) ANN for tackling optimization with flexible and adaptive searching methodology” |
Li et. al. [96], 2019 | “ReliefF and RS” | “Heart disease diagnosis” | “Approach as an integrated feature selection system for heart disease diagnosis” | “To data analysis and data mining that has been applied successfully to many real-life problems in medicine, pharmacology” |
Heidari et al. [95], 2019 | “Multilayer perceptron (MLP)” | “Heart disease diagnosis” | “MLP and ANNs technology together” | “Provide various continuous functions” |
Fki et al. [97], 2018 | “KNN, NB, SVM, LR, support vector regression, classification trees, regression trees, and RF” | “Prediction outpatient treatment” | “ML with IoT data for risk prediction” | “The model is a set of hypotheses about dialysis biomarkers proved in a probabilistic format” |
Ghazal et al. [98], 2021 | “Supervised Learning, Unsupervised Learning and Reinforcement Learning” | “Prediction outpatient treatment” | “Classifications and Prediction models” | “Provides different procedures used in all the three learning styles” |
Yao et al. [99], 2019 | “CNN” | “Prediction outpatient treatment” | “Deep learning model for predicting chemical composition” | “Developed CNN, like stacked auto-encoders, deep belief networks, and RNN” |
Troisi et al. [100], 2019 | “TORS” | “Robot surgery” | “Transoral Robotic Surgery” | “Fewer blood losses, faster postoperative recovery, and fewer adhesions” |
De Momi et. al. [101], 2010 | “AESOP” | “Robot surgery” | Automatic Endoscopic System for Optimal Positioning | “Robotic endoscope and surgical robotic systems” |
Panesar et. al. [102], 2019 | “STAR” | “Robot surgery” | “Smart Tissue Autonomous Robot” | “Nascent clinical viability of a self-governing soft-tissue surgical robot” |
Chen et. al. [103], 2018 | “5G-Smart Diabetes” | “Personalized healthcare” | “Personalized diabetes diagnosis” | “Real-time system to analysis diabetes suffering” |
Katzman et. al. [104], 2018 | “DeepSurv” | “Personalized healthcare” | “DNN and state-of-the-art survival method” | “Provide individual treatment recommendations” |
Nayyar et. al. [105], 2019 | “BioSenHealth 1.0” | “Personalized healthcare” | “Real-time monitoring of vital statistics of patients” | “Live data access using thingspeak.com cloud platform” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junaid, S.B.; Imam, A.A.; Shuaibu, A.N.; Basri, S.; Kumar, G.; Surakat, Y.A.; Balogun, A.O.; Abdulkarim, M.; Garba, A.; Sahalu, Y.; et al. Artificial Intelligence, Sensors and Vital Health Signs: A Review. Appl. Sci. 2022, 12, 11475. https://doi.org/10.3390/app122211475
Junaid SB, Imam AA, Shuaibu AN, Basri S, Kumar G, Surakat YA, Balogun AO, Abdulkarim M, Garba A, Sahalu Y, et al. Artificial Intelligence, Sensors and Vital Health Signs: A Review. Applied Sciences. 2022; 12(22):11475. https://doi.org/10.3390/app122211475
Chicago/Turabian StyleJunaid, Sahalu Balarabe, Abdullahi Abubakar Imam, Aliyu Nuhu Shuaibu, Shuib Basri, Ganesh Kumar, Yusuf Alhaji Surakat, Abdullateef Oluwagbemiga Balogun, Muhammad Abdulkarim, Aliyu Garba, Yusra Sahalu, and et al. 2022. "Artificial Intelligence, Sensors and Vital Health Signs: A Review" Applied Sciences 12, no. 22: 11475. https://doi.org/10.3390/app122211475
APA StyleJunaid, S. B., Imam, A. A., Shuaibu, A. N., Basri, S., Kumar, G., Surakat, Y. A., Balogun, A. O., Abdulkarim, M., Garba, A., Sahalu, Y., Mohammed, A., Mohammed, Y. T., Abdulkadir, B. A., Abba, A. A., Kakumi, N. A. I., & Alazzawi, A. K. (2022). Artificial Intelligence, Sensors and Vital Health Signs: A Review. Applied Sciences, 12(22), 11475. https://doi.org/10.3390/app122211475