Vibration Suppression for Flexible Plate with Tunable Magnetically Controlled Joint Stiffness/Damping
Abstract
:1. Introduction
2. System Model
2.1. Principle of Tunable Magnetically Controlled Stiffness/Damping
- (a)
- Tunable magnetically controlled stiffness.
- (b)
- Tunable magnetically controlled damping.
2.2. Dynamic Modeling of the Coupled System
3. Numerical Analysis and Simulation
4. Experiment Results and Discussion
4.1. Experimental Device
4.2. Vibration Control Experiments Based on Single Frequency Excitation
4.2.1. Case-1: Same Frequency yet Diverse Amplitudes
4.2.2. Case-2: Diverse Frequencies and Diverse Amplitudes
4.3. Vibration Control Experiments Based on Multiple Frequency Excitations
4.4. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azadi, E.; Fazelzadeh, S.A.; Azadi, M. Thermally induced vibrations of smart solar panel in a low-orbit satellite. Adv. Space Res. 2017, 59, 1502–1513. [Google Scholar] [CrossRef]
- Alkomy, H.; Shan, J. Modeling and validation of reaction wheel micro-vibrations considering imbalances and bearing dis-turbances. J. Sound Vib. 2021, 492, 115766. [Google Scholar] [CrossRef]
- Guo, J.; Geng, Y.; Wu, B.; Kong, X. Vibration suppression of flexible spacecraft during attitude maneuver using CMGs. Aerosp. Sci. Technol. 2018, 72, 183–192. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, D.; He, G.; Ge, X.; Hao, Y. Modelling and vibration analysis for the multi-plate structure connected by nonlinear hinges. J. Sound Vib. 2020, 492, 115809. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Huang, W. Rigid-flexible-thermal analysis of planar composite solar array with clearance joint considering torsional spring, latch mechanism and attitude controller. Nonlinear Dyn. 2019, 96, 2031–2053. [Google Scholar] [CrossRef]
- Li, D.X.; Liu, W.; Lei, Y.J.; Sun, X.Y. Dynamic model for large multi-flexible-body space structures. Int. J. Struct. Stab. Dyn. 2014, 14, 1350072. [Google Scholar] [CrossRef]
- Kong, Y.; Huang, H. Design and experiment of a passive damping device for the multi-panel solar array. Adv. Mech. Eng. 2017, 9, 1687814016687965. [Google Scholar] [CrossRef]
- Maly, J.R.; Reed, B.B.; Viens, M.J.; Parker, B.H.; Pendleton, S.C. Life cycle testing of viscoelastic materials for Hubble Space Telescope solar array 3 damper. In Proceedings of the Smart Structures and Materials, San Diego, CA, USA, 3–6 March 2003; Volume 5052, pp. 128–141. [Google Scholar]
- Kienholz, D.A.; Pendleton, S.C.; Richards, K.E., Jr.; Morgenthaler, D.R. Demonstration of solar array vibration suppression. In Proceedings of the 1994 North American Conference on Smart Structures and Materials, Orlando, FL, USA, 14–16 February 1994; Volume 2193, pp. 59–72. [Google Scholar]
- Sales, T.P.; Rade, D.A.; de Souza, L.C.G. Passive vibration control of flexible spacecraft using shunted piezoelectric transducers. Aerosp. Sci. Technol. 2013, 29, 403–412. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, F. Tuned mass damper for self-excited vibration control: Optimization involving nonlinear aeroelastic effect. J. Wind Eng. Ind. Aerodyn. 2021, 220, 104836. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, T.; Øiseth, O. Vortex-induced vibration control of a flexible circular cylinder using a nonlinear energy sink. J. Wind. Eng. Ind. Aerodyn. 2022, 229, 105163. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Luo, Y.; Zhang, Y.; Xie, S. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 2018, 100, 135–151. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S.; Li, J.-Y.; Spencer, B.F. Dynamic behavior of stay cables with passive negative stiffness dampers. Smart Mater. Struct. 2016, 25, 75044. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S.; Spencer, B.F., Jr. Experimental study on passive negative stiffness damper for cable vibration mitigation. J. Eng. Mech. 2017, 143, 4017070. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S.; Nagarajaiah, S. Performance Comparison between Passive Negative-Stiffness Dampers and Active Control in Cable Vibration Mitigation. J. Bridge Eng. 2017, 22, 4017054. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Inman, D.J. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. J. Sound Vib. 2016, 363, 33–53. [Google Scholar] [CrossRef]
- Qiu, Z.C.; Wang, X.F.; Zhang, X.M.; Liu, J.G. A novel vibration measurement and active control method for a hinged flexible two-connected piezoelectric plate. Mech. Syst. Signal Process. 2018, 107, 357–395. [Google Scholar] [CrossRef]
- Li, D.; Jiang, J.; Liu, W.; Fan, C. A New Mechanism for the Vibration Control of Large Flexible Space Structures with Embedded Smart Devices. IEEE/ASME Trans. Mechatron. 2014, 20, 1653–1659. [Google Scholar] [CrossRef]
- Xu, R.; Li, D.; Jiang, J. An online learning-based fuzzy control method for vibration control of smart solar panel. J. Intell. Mater. Syst. Struct. 2015, 26, 2547–2555. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, H.; Bi, F.; Shi, J. A MIMO data driven control to suppress structural vibrations. Aerosp. Sci. Technol. 2018, 77, 429–438. [Google Scholar] [CrossRef]
- Wang, J.; Li, D. Experiments study on attitude coupling control method for flexible spacecraft. Acta Astronaut. 2018, 147, 393–402. [Google Scholar] [CrossRef]
- Gol Zardian, M.; Moslemi, N.; Mozafari, F.; Gohari, S.; Yahya, M.Y.; Burvill, C.; Ayob, A. Flexural and free vibration control of smart epoxy composite beams using shape memory alloy wires actuator. J. Intell. Mater. Syst. Struct. 2020, 31, 1557–1566. [Google Scholar] [CrossRef]
- Gohari, S.; Mozafari, F.; Moslemi, N.; Mouloodi, S.; Alebrahim, R.; Ahmed, M.; Abdi, B.; Sudin, I.; Burvill, C. Static and dynamic deformation response of smart laminated composite plates induced by inclined piezoelectric actuators. J. Compos. Mater. 2022, 56, 3269–3293. [Google Scholar] [CrossRef]
- Pu, Y.X.; Zhou, H.L.; Meng, Z. Multi-channel adaptive active vibration control of piezoelectric smart plate with online sec-ondary path modeling using PZT patches. Mech. Syst. Signal Process. 2019, 120, 166–179. [Google Scholar] [CrossRef]
- Jiang, J.-P.; Li, D.-X. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures. Smart Mater. Struct. 2010, 19, 85020. [Google Scholar] [CrossRef]
- Jiang, J.P.; Li, D.X. Decentralized robust vibration control of smart structures with parameter uncertainties. J. Intell. Mater. Syst. Struct. 2011, 22, 137–147. [Google Scholar] [CrossRef]
- Gripp, J.A.B.; Rade, D.A. Vibration and noise control using shunted piezoelectric transducers: A review. Mech. Syst. Signal Process. 2018, 112, 359–383. [Google Scholar] [CrossRef]
- Zhu, Q.; Yue, J.Z.; Liu, W.Q.; Wang, X.D.; Chen, J.; Hu, G.D. Active vibration control for piezoelectricity cantilever beam: An adaptive feed-forward control method. Smart Mater. Struct. 2017, 26, 47003. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, Y.B. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning. J. Sound Vib. 2012, 331, 3677–3694. [Google Scholar] [CrossRef]
- Ma, B.; Qiu, Z.-C.; Zhang, X.-M.; Han, J.-D. Experiments on resonant vibration suppression of a piezoelectric flexible clamped–clamped plate using filtered-U least mean square algorithm. J. Intell. Mater. Syst. Struct. 2014, 27, 166–194. [Google Scholar] [CrossRef]
- Casciati, F.; Rodellar, J.; Yildirim, U. Active and semi-active control of structures-theory and applications: A review of recent advances. J. Intell. Mater. Syst. Struct. 2012, 23, 1181–1195. [Google Scholar] [CrossRef]
- Pu, H.; Yuan, S.; Peng, Y.; Meng, K.; Zhao, J.; Xie, R.; Huang, Y.; Sun, Y.; Yang, Y.; Xie, S.; et al. Multi-layer electromagnetic spring with tunable negative stiffness for semi-active vibration isolation. Mech. Syst. Signal Process. 2019, 121, 942–960. [Google Scholar] [CrossRef]
- Hu, W.; Gao, Y.; Sun, X.; Yang, Y.; Yang, B. Semi-active vibration control of a rotating flexible plate using stiffness and damping actively tunable joint. J. Vib. Control 2019, 25, 2819–2833. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, S.; Zhao, L. Modeling and disturbance suppression for spacecraft solar array systems subject to drive fluctuation. Aerosp. Sci. Technol. 2020, 108, 106398. [Google Scholar] [CrossRef]
- Hu, W.; Gao, Y.; Yang, B. Semi-active vibration control of two flexible plates using an innovative joint mechanism. Mech. Syst. Signal Process. 2019, 130, 565–584. [Google Scholar] [CrossRef]
- Singiresu, S.R. Mechanical Vibrations; Addison Wesley: Boston, MA, USA, 1995. [Google Scholar]
Length (l) | Thickness (h) | Width (b) | Elastic Modulus (E) | Density (ρ) |
---|---|---|---|---|
1000 mm | 1.5 mm | 310 mm | 69 GPa | 2766 kg/m3 |
Current (A) | Torsional Stiffness (N ∙ m/rad) | Natural Frequency (Hz) | Amplitude (°) |
---|---|---|---|
1 | 0.3843 | 0.210 | 54.27 |
2 | 0.7686 | 0.292 | 38.89 |
3 | 1.153 | 0.353 | 32.24 |
4 | 1.537 | 0.402 | 28.28 |
5 | 1.922 | 0.444 | 25.67 |
6 | 2.306 | 0.480 | 23.74 |
Major Frequency | Amplitude | |||
---|---|---|---|---|
I | 0.23 Hz | Without control | With control-6 A | |
Time domain | −10.84~13.19° | −1.48~1.48° | ||
Frequency domain | 11.71° | 1.22° | ||
Control effect | 89.58% (−19.64 dB) | |||
II | 0.23 Hz | Without control | With control-6 A | |
Time domain | −11.18~11.42° | −2.11~2.10° | ||
Frequency domain | 10.43° | 1.95° | ||
Control effect | 81.30% (−14.56 dB) | |||
III | 0.23 Hz | Without control | With control-6 A | |
Time domain | −8.92~8.98° | −1.51~1.46° | ||
Frequency domain | 9.23° | 1.26° | ||
Control effect | 86.35% (−17.30 dB) |
Major Frequency | Amplitude | |||
---|---|---|---|---|
I | 0.244 Hz | Without control | With control-6 A | |
Time domain | −8.36~8.22° | −1.25~1.22° | ||
Frequency domain | 8.26° | 1.43° | ||
Control effect | 82.69% (−15.23 dB) | |||
II | 0.282 Hz | Without control | With control-6 A | |
Time domain | −6.71~6.68° | −1.13~1.07° | ||
Frequency domain | 6.16° | 0.83° | ||
Control effect | 86.52% (−17.41 dB) | |||
III | 0.343 Hz | Without control | With control-6 A | |
Time domain | −3.52~3.49° | −0.45~0.39° | ||
Frequency domain | 3.50° | 0.41° | ||
Control effect | 88.29% (−18.63 dB) |
Experiment | Amplitude | Major Frequency | ||||
---|---|---|---|---|---|---|
I | Without control | −26.27~30.78° | 0.06 Hz | 0.13 Hz | 0.19 Hz | |
Amplitude | 3.77° | 15.84° | 5.39° | |||
With control-6 A | −7.13~5.58° | Amplitude | 0.72° | 4.63° | 0.31° | |
Control effect | 80.90% −14.38 dB | 70.77% −10.68 dB | 94.25% −24.80 dB | |||
II | Without control | −43.95~41.44° | 0.06 Hz | 0.12 Hz | 0.18 Hz | |
Amplitude | 10.89° | 28.15° | 6.07° | |||
With control-6 A | −11.46~10.26° | Amplitude | 2.01° | 6.74° | 0.32° | |
Control effect | 81.54% −14.68 dB | 76.06% −12.42 dB | 94.73% −25.56 dB | |||
III | Without control | −44.20~42.41° | 0.06 Hz | 0.12 Hz | 0.18 Hz | |
Amplitude | 11.31° | 32.42° | 8.33° | |||
With control-6 A | −13.18~9.03° | Amplitude | 1.51° | 7.31° | 0.84° | |
Control effect | 86.65% −17.49 dB | 77.45% −12.94 dB | 89.92% −19.93 dB |
Experiment | Amplitude | Major Frequency | |||||
---|---|---|---|---|---|---|---|
I | Without control | −14.51~14.08° | 0.06 Hz | 0.13 Hz | |||
Amplitude | 1.74° | 10.84° | |||||
With control -6 A | −4.58~4.75° | Amplitude | 0.29° | 3.19° | |||
Control effect | 83.33% −15.56 dB | 70.57% −10.62 dB | |||||
II | Without control | −22.33~15.75° | 0.05 Hz | 0.09 Hz | 0.14 Hz | 0.18 Hz | |
Amplitude | 3.36° | 10.30° | 3.49° | 2.99° | |||
With control -6 A | −3.78~3.56° | Amplitude | 0.67° | 2.21° | 0.53° | 0.35° | |
Control effect | 80.06% −14.01 dB | 78.54% −13.37 dB | 84.81% −16.37 dB | 88.29% −18.63 dB | |||
III | Without control | −29.89~27.73° | 0.06 Hz | 0.12 Hz | 0.19 Hz | ||
Amplitude | 2.28° | 19.63° | 2.57° | ||||
With control -6 A | −7.40~6.64° | Amplitude | 1.27° | 3.23° | 0.77° | ||
Control effect | 44.30% −5.08 dB | 83.55% −15.67 dB | 70.04% −10.47 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Wu, J.; Zhu, Q.; Shen, J.; Zheng, X. Vibration Suppression for Flexible Plate with Tunable Magnetically Controlled Joint Stiffness/Damping. Appl. Sci. 2022, 12, 11483. https://doi.org/10.3390/app122211483
Hu W, Wu J, Zhu Q, Shen J, Zheng X. Vibration Suppression for Flexible Plate with Tunable Magnetically Controlled Joint Stiffness/Damping. Applied Sciences. 2022; 12(22):11483. https://doi.org/10.3390/app122211483
Chicago/Turabian StyleHu, Wei, Jianming Wu, Qinghua Zhu, Jie Shen, and Xunjiang Zheng. 2022. "Vibration Suppression for Flexible Plate with Tunable Magnetically Controlled Joint Stiffness/Damping" Applied Sciences 12, no. 22: 11483. https://doi.org/10.3390/app122211483
APA StyleHu, W., Wu, J., Zhu, Q., Shen, J., & Zheng, X. (2022). Vibration Suppression for Flexible Plate with Tunable Magnetically Controlled Joint Stiffness/Damping. Applied Sciences, 12(22), 11483. https://doi.org/10.3390/app122211483