Classification of the Human Protein Atlas Single Cell Using Deep Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Cell Classification
2.2. Single Cell Classification
3. Dataset
4. Pre-Processing
5. Methodology
5.1. CSPNet Algorithm
5.2. ResNet Algorithm
5.3. BoTNet Algorithm
6. Results and Evaluation
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Buettner, R.; Bilo, M.; Bay, N.; Zubac, T. A Systematic Literature Review of Medical Image Analysis Using Deep Learning. In Proceedings of the 2020 IEEE Symposium on Industrial Electronics & Applications (ISIEA), TBD, Malaysia, 17–18 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al. End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant Disease Detection and Classification by Deep Learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidari, A.; Jabraeil Jamali, M.A.; Jafari Navimipour, N.; Akbarpour, S. Deep Q-Learning Technique for Offloading Offline/Online Computation in Blockchain-Enabled Green IoT-Edge Scenarios. Appl. Sci. 2022, 12, 8232. [Google Scholar] [CrossRef]
- Rehman, A.; Iqbal, M.A.; Xing, H.; Ahmed, I. COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review. Appl. Sci. 2021, 11, 3414. [Google Scholar] [CrossRef]
- Heidari, A.; Jafari Navimipour, N.; Unal, M.; Toumaj, S. Machine learning applications for COVID-19 outbreak management. Neural Comput. Appl. 2022, 34, 15313–15348. [Google Scholar] [CrossRef]
- Llamas, J.; Lerones, P.M.; Medina, R.; Zalama, E.; Gómez-García-Bermejo, J. Classification of Architectural Heritage Images Using Deep Learning Techniques. Appl. Sci. 2017, 7, 992. [Google Scholar] [CrossRef] [Green Version]
- Fourcade, A.; Khonsari, R. Deep learning in medical image analysis: A third eye for doctors. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Kumar, E.S.; Bindu, C.S. Medical image analysis using deep learning: A systematic literature review. In Proceedings of the International Conference on Emerging Technologies in Computer Engineerin, Jaipur, India, 1–2 February 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–97. [Google Scholar]
- Schlüter, J.P.; Czuppon, P.; Schauer, O.; Pfaffelhuber, P.; McIntosh, M.; Becker, A. Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level. J. Biotechnol. 2015, 198, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Glaros, A. Data-Driven Definition of Cell Types Based on Single-Cell Gene Expression Data; Uppsala University: Stockholm, Sweden, 2016. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Elazab, N.; Soliman, H.; El-Sappagh, S.; Islam, S.; Elmogy, M. Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends. Mathematics 2020, 8, 1863. [Google Scholar] [CrossRef]
- Poulin, J.F.; Gaertner, Z.; Moreno-Ramos, O.A.; Awatramani, R. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. Trends Neurosci. 2020, 43, 155–169. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, B.; Arbeláez, P.; Girshick, R.; Malik, J. Simultaneous detection and segmentation. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–312. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Ouyang, W.; Zimmer, C. The imaging tsunami: Computational opportunities and challenges. Curr. Opin. Syst. Biol. 2017, 4, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, D.P.; Winsnes, C.F.; Åkesson, L.; Hjelmare, M.; Wiking, M.; Schutten, R.; Campbell, L.; Leifsson, H.; Rhodes, S.; Nordgren, A.; et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 2018, 36, 820–828. [Google Scholar] [CrossRef]
- Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Cesnik, A.J.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Dai, S.; Lan, J.; Jinmo, P.; et al. Analysis of the human protein atlas image classification competition. Nat. Methods 2019, 16, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Tsoumakas, G.; Katakis, I. Multi-label classification: An overview. Int. J. Data Warehous. Min. (IJDWM) 2007, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dürr, O.; Sick, B. Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 2016, 21, 998–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, N.; Thus, H.K.; Lam, E.Y. Computational single-cell classification using deep learning on bright-field and phase images. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 190–193. [Google Scholar]
- Kaggle Human Protein Atlas—Single Cell Classification: Challenge. Dataset Sample—Microscope Images. 2020. Available online: https://www.kaggle.com/philculliton/hpa-2020-16bit-training-set (accessed on 11 May 2022).
- Kaggle Human Protein Atlas—Single Cell Classification: Challenge. Data Description. 2021. Available online: https://www.kaggle.com/c/hpa-single-cell-image-classification/data?select=train (accessed on 11 May 2022).
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Eckle, K.; Schmidt-Hieber, J. A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. 2019, 110, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Dunne, R.A.; Campbell, N.A. On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. In Proceedings of the 8th Australian Conference on the Neural Networks, Melbourne, Australia, 11–13 June 1997; Citeseer: State College, PA, USA, 1997; Volume 181, p. 185. [Google Scholar]
- McMahon, D.J.; Brown, R.J. Evaluation of Formagraph for comparing rennet solutions. J. Dairy Sci. 1982, 65, 1639–1642. [Google Scholar] [CrossRef]
- Shen, Z.; Bello, I.; Vemulapalli, R.; Jia, X.; Chen, C.H. Global Self-Attention Networks for Image Recognition. arXiv 2020, arXiv:2010.03019. [Google Scholar]
- Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv 2019, arXiv:1905.09418. [Google Scholar]
Ref. | Dataset | Algorithm | Classes | Accuracy |
---|---|---|---|---|
[29] | Human Protein Atlas (HPA) | Project Discovery | 29 | 72% |
[29] | Human Protein Atlas (HPA) | Localization Cellular Annotation Tool Loc-CAT | 29 | 72% |
[30] | 42,774 nonpublic images + HPAv18 | DenseNet20 + Network size medium | – | 59.3% |
[30] | 42,774 nonpublic images + HPAv18 | DenseNet20 + Focused on data preprocessing | – | 57.1% |
[30] | 42,774 nonpublic images + HPAv18 | DenseNet20 + Focused on Data augmentation | – | 57.0% |
Algorithm | Number of Epochs | Train Loss | Valid Loss | Accuracy |
---|---|---|---|---|
CSPNet | 9 | 0.16 | 0.1528 | 95% |
BoTNet | 4 | 0.19 | 0.2007 | 93% |
ResNet | 340 | 0.22 | 0.1528 | 91% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubait, T.; Sindi, T.; Alhakami, H. Classification of the Human Protein Atlas Single Cell Using Deep Learning. Appl. Sci. 2022, 12, 11587. https://doi.org/10.3390/app122211587
Alsubait T, Sindi T, Alhakami H. Classification of the Human Protein Atlas Single Cell Using Deep Learning. Applied Sciences. 2022; 12(22):11587. https://doi.org/10.3390/app122211587
Chicago/Turabian StyleAlsubait, Tahani, Taghreed Sindi, and Hosam Alhakami. 2022. "Classification of the Human Protein Atlas Single Cell Using Deep Learning" Applied Sciences 12, no. 22: 11587. https://doi.org/10.3390/app122211587
APA StyleAlsubait, T., Sindi, T., & Alhakami, H. (2022). Classification of the Human Protein Atlas Single Cell Using Deep Learning. Applied Sciences, 12(22), 11587. https://doi.org/10.3390/app122211587