The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Hypotheses
2.1.1. The Spatial Spillover Effect of Environmental Regulation on Agricultural Green Development
2.1.2. The Spatial Spillover Effect of Financial Support for Agriculture on Agricultural Green Development
2.1.3. The Spatial Spillover Effect of Interaction between Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development
2.2. Data and Methodology
2.2.1. Data
2.2.2. Spatial Weight Matrix Setting
2.2.3. Spatial Autocorrelation Test
2.2.4. The Spatial Dubin Model
2.3. Variable Measurements
2.3.1. Measurement of the Explained Variables
2.3.2. Measurement of the Explanatory Variables
2.3.3. Control Variables and Other Variables
- (1)
- Industrial structure (struc): referring to the previous research [36], the proportion of the output value of the primary industry in the output value of these three industries is adopted to represent an industrial structure.
- (2)
- Agricultural mechanization (agrimech): referring to the previous research [37], agricultural mechanization is an important basis for promoting the progress of agricultural technology and modernization, which is generally measured by the number of large and medium-sized tractors in each region.
- (3)
- Labors’ education level (edu): referring to the previous research [38], labors’ education level is generally measured by the average number of education years; that is, the average number of education years of the rural population = (illiterate × 1 + number of labor with primary school education × 6 + number of labor with junior middle school education × 9 + number of labor with secondary school education × 12 + number of labor with a junior college education or above × 16)/the total number of labor over six years old.
- (4)
- Agricultural scale (scale): referring to the previous research [39], the agricultural scale is denoted as the arable land area (mu/person) of rural households.
2.3.4. Descriptive Statistics
3. Empirical Results
3.1. Spatial Autocorrelation Analysis
3.2. Spatial-Temporal Evolution Characteristics of Agricultural Green Development
3.3. Spatial Dubin Model Regression Analysis
3.4. Spatial Spillover Effect Decomposition
3.5. Heterogeneity Analysis
3.5.1. Stage Heterogeneity Analysis
3.5.2. Regional Heterogeneity Analysis
3.6. Robustness Test
3.6.1. Replace the Spatial Weight Matrix
3.6.2. Change Estimation Method
3.6.3. Adding Control Variables
4. Conclusions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, G. How does Agro-Tourism Integration Influence the Rebound Effect of China’s Agricultural Eco-Efficiency? An Economic Development Perspective. Front. Environ. Sci. 2022, 10, 921103. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Sarkar, A.; Zhang, F. How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China. Int. J. Environ. Res. Public Health 2021, 18, 7571. [Google Scholar] [CrossRef] [PubMed]
- Mazur, K.; Tomashuk, I. Governance and Regulation as An Indispensable Condition for Developing the Potential of Rural. Areas. Balt. J. Econ. 2019, 5, 67–78. [Google Scholar] [CrossRef]
- Hou, D.; Wang, X. Inhibition or Promotion?—The Effect of Agricultural Insurance on Agricultural Green Development. Front. Public Health 2022, 10, 910534. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Guo, S.; Tang, M.; Su, M.; Li, H. Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agriculture Production in China. Int. J. Environ. Res. Public Health 2022, 19, 7155. [Google Scholar] [CrossRef]
- Nowak, A.; Kasztelan, A. Economic Competitiveness vs. Green Competitiveness of Agriculture in the European Union Countries. Oeconomia Copernic. 2022, 13, 379–405. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L. Fiscal Spending on Environmental Protection on Carbon Emission Reduction of Spatial Spillover Effect Analysis. J. Statis. Decis. 2022, 38, 154–158. [Google Scholar] [CrossRef]
- Gao, Y.; Tao, W.; Wen, Y.; Wang, X. A Spatial Econometric Study on Effects of Fiscal and Financial Supports for Agriculture in China. Agr. Econ. 2013, 59, 315–332. [Google Scholar] [CrossRef]
- Guo, H.; Li, S. Environment Regulation, Space Effect and Green Agricultural Development. J. Res. Develop. Manag. 2022, 34, 54–67. [Google Scholar] [CrossRef]
- Zhou, J. Analysis and Countermeasures of Green Finance Development under Carbon Peaking and Carbon Neutrality Goals. Open J. Soc. Sci 2022, 10, 147–154. [Google Scholar] [CrossRef]
- Zhllima, E.; Shahu, E.; Xhoxhi, O.; Gjika, I. Understanding Farmers’ Intentions to Adopt Organic Farming in Albania. New Medit 2021, 20, 97–111. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Rjoub, H.; Kalugina, O.; Hussain, N. Economic Growth, Renewable Energy Consumption, and Ecological Footprint: Exploring the Role of Environmental Regulations and Democracy in Sustainable Development. Sustain. Dev. 2022, 30, 595–605. [Google Scholar] [CrossRef]
- Chen, Q.; Mao, Y.; Morrison, A. Impacts of Environmental Regulations on Tourism Carbon Emissions. J. Environ. Res. Public Health 2022, 18, 12850. [Google Scholar] [CrossRef]
- Shi, F.; Ding, R.; Li, H.; Hao, S. Environmental Regulation, Digital Financial Inclusion, and Environmental Pollution: An Empirical Study Based on the Spatial Spillover Effect and Panel Threshold Effect. Sustainability 2022, 14, 6869. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Hao, R.; Wu, L. Agricultural Science and Technology Innovation, Spatial Spillover and Agricultural Green Development-Taking 30 Provinces in China as the Research Object. Appl. Sci. 2022, 12, 845. [Google Scholar] [CrossRef]
- Tang, H.; Tie, W.; Zhong, F. Research on the Spatial Spillover Effect of Environment Government in China. Stat. Inf. Forum. 2022, 37, 75–89. [Google Scholar]
- Liang, L.; Qu, F.; Feng, S. Measurement of Agricultural Technical Efficiency Based on Environmental Pollution Constraints. J. Nat. Res. 2012, 27, 1580–1589. [Google Scholar]
- Ikram, M.; Sroufe, R.; Awan, U.; Abid, N. Enabling Progress in Developing Economies: A Novel hybrid Decision-making Model for Green Technology Planning. Sustainability 2021, 14, 258. [Google Scholar] [CrossRef]
- Pan, D. Research on Agricultural Productivity in China Considering Resources and Environment Factors; Nanjing Agricultural University: Nanjing, China, 2012. [Google Scholar]
- Li, C.; Chandio, A.; He, G. Dual Performance of Environmental Regulation on Economic and Environmental Development: Evidence from China. Environ. Sci. Pollut. Res. 2021, 29, 3116–3130. [Google Scholar] [CrossRef]
- Hamman, E.; Deane, F.; Kennedy, A.; Huggins, A.; Nay, Z. Environmental Regulation of Agriculture in Federal Systems of Government: The Case of Australia. Agronomy 2021, 11, 1478. [Google Scholar] [CrossRef]
- Teff-Seker, Y.; Segre, H.; Eizenberg, E.; Orenstein, D.; Shwartz, A. Factors Influencing Farmer and Resident Willingness to Adopt an Agri-environmental Scheme in Israe. J. Environ. Manag. 2022, 302, 114066. [Google Scholar] [CrossRef]
- Yan, C.; Yin, L.; He, B. Logistics Industry Agglomeration, Spatial Spillover Effect and Agricultural Green Total Factor Productivity: An Empirical Analysis Based on Provincial Data. China Circulat. Econ. 2022, 4, 3–16. [Google Scholar]
- Yan, L.; Liu, H.; Deng, Y.; Qu, Z. Agricultural Ecological Level of Capital Investment and its Spatial Spillover Effect Research. J. China Univ. Geosci. 2021, 21, 77–90. [Google Scholar]
- Din, S.; Erilli, N. Spatial Analysis of Determinants Affecting the Total Number of COVID-19 Cases of Provinces in Turkey. Appl. Econom. 2022, 65, 102–116. [Google Scholar]
- Wang, R.; He, Z. Exploring the Impact of “Double Cycle” and Industrial Upgrading on Sustainable High-quality Economic Development: Application of Spatial and Mediation Models. Sustainability 2022, 14, 2432. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How Crop Insurance Influences Agricultural Green Total Factor Productivity: Evidence from Chinese Farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Tang, M.; Guo, L. Impact of Population Aging and Renewable Energy Consumption on Agricultural Green Total Factor Productivity in Rural China: Evidence from Panel VAR Approach. Agriculture 2022, 12, 715. [Google Scholar] [CrossRef]
- Chi, M.; Guo, Q.; Mi, L.; Wang, G.; Song, W. Spatial Distribution of Agricultural Eco-Efficiency and Agriculture High-Quality Development in China. Land 2022, 11, 5. [Google Scholar] [CrossRef]
- Qiu, W.; Zhong, Z.; Li, Z. Agricultural Non-point Source Pollution in China: Evaluation, Convergence Characteristics and Spatial Effects. Chin. Geogr. Sci. 2021, 31, 571–584. [Google Scholar] [CrossRef]
- Ge, P.; Wang, S.; Huang, X. Calculation of Green Total Factor Productivity of China’s Agriculture China Population. Resour. Environ. 2018, 28, 66–74. [Google Scholar]
- Chen, X.; Meng, Q.; Shi, J.; Liu, Y.; Sun, J.; Shen, W. Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China. Land 2022, 11, 1042. [Google Scholar] [CrossRef]
- Shen, Z.; Balezentis, T.; Chen, X.; Valdmanis, V. Green Growth and Structural Change in Chinese Agricultural Sector during 1997–2014. Chin. Econ. Rev. 2018, 51, 83–96. [Google Scholar] [CrossRef]
- Zhan, J.; Xu, Y. Environmental Regulation, Agricultural Green Productivity and Food Security. Chin. Popul. Res. Environ. 2019, 29, 167–176. [Google Scholar]
- Tang, L.; Sun, S. Fiscal Incentives, Financial Support for Agriculture, and Urban-rural Inequality. Inter. Rev. Fin. Anal. 2022, 80, 102057. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J. Analysis of the Threshold Effect of Agricultural Industrial Agglomeration and Industrial Structure Upgrading on Sustainable Agricultural Development in China. J. Clean. Prod. 2022, 341, 130818. [Google Scholar] [CrossRef]
- Xu, P.; Jin, Z.; Ye, X.; Wang, C. Efficiency Measurement and Spatial Spillover Effect of Green Agricultural Development in China. Front. Environ. Sci. 2022, 10, 909321. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, M.; Wang, B. Impacts of Government Subsidies and Environmental Regulations on Green Process Innovation: A Nonlinear Approach. Tech. Soc. 2019, 63, 101417. [Google Scholar] [CrossRef]
- Guo, X.; Li, B.; Jiang, S.; Nie, Y. Can Increasing Scale Efficiency Curb Agricultural Nonpoint Source Pollution? Int. J. Environ. Res. Pub. 2021, 18, 8798. [Google Scholar] [CrossRef]
- Gao, Y.; Niu, Z. Agricultural Informatization, Spatial Spillover Effect and Agricultural Green Total Factor Productivity: Based on SBM-ML Index Method and Spatial Dubin Model. Stat. Inf. Forum. 2018, 33, 66–75. [Google Scholar]
- Luo, N.; Wang, Y. Fiscal Decentralization, Environmental Regulation and Regional Eco-efficiency study based on Dynamic Spatial environment. China Popul. Res. Environ. 2017, 27, 110–118. [Google Scholar]
- Chang, H.; Sigman, H.; Traub, L. Endogenous Decentralization in Federal Environmental Policies. Int. Rev. Law Econ. 2014, 37, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Ruan, J. Analyzing Barriers for Developing a Sustainable Circular Economy in Agriculture in China Using Grey-DEMATEL Approach. Sustainability 2020, 12, 6358. [Google Scholar] [CrossRef]
- Deng, H.; Jing, X.; Shen, Z. Internet Technology and Green Productivity in Agriculture. Environ. Sci. Pollut. Res. 2022, 29, 81441–81451. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gong, Q. Evolution and Optimization of Agricultural Green Development Support Policies Since the Founding of New China. World Agric. 2020, 40–50. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Sui, X. Internet Development, Market Dynamism and Tourism Economic Growth: An Analysis from the Perspective of Spatial Spillover. Tour. Sci. 2022, 36, 14–43. [Google Scholar]
- Zhao, L.; Zhang, Y.; Pan, F. Environmental Regulation and Innovation Efficiency of Agricultural Science and Technology. Res. Manag. 2019, 40, 76–85. [Google Scholar]
- Grigoryeva, M.; Dmitrevskaya, I.; Belopukhov, S.; Osipova, A. The Chemical Training of Agrarian Specialists: From the Chemicalization of Agriculture to Green Technologies. Sustainability 2022, 14, 8062. [Google Scholar] [CrossRef]
- Geng, R.; Sharpley, A.N. A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. J. Clean. Prod. 2019, 234, 1023–1032. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China. J. Environ. Manag. 2018, 207, 134–140. [Google Scholar] [CrossRef]
Statistic of Test | Statistic | Statistic of Test | Statistic |
---|---|---|---|
Moran’s I | 5.855 *** | LR-error | 18.85 *** |
LM (error) | 624.921 *** | Wald-lag | 187.90 *** |
R-LM (error) | 185.436 *** | Wald-error | 135.02 *** |
LM (lag) | 499.218 *** | Individual effect | 294.80 *** |
R-LM (lag) | 59.732 *** | Time effect | 412.46 *** |
LR-lag | 19.76 *** | Hausman inspection | 14.14 ** |
Variable Categories | Variables: Definitions/Unit | Variable Abbreviations | The Data Source |
---|---|---|---|
Input | Labor force: Number of primary industry employees/ten thousand | L | China Statistical Yearbook, Statistical Yearbook of Provinces and Cities |
Land resources: total sown area of crops/1000 ha, aquaculture area/1000 ha | B | China Rural Statistical Year-book, China Statistical Year-book | |
Water Resources: Total agricultural water use (billion m3) | R | China Statistical Yearbook | |
Desired output | Added value of the primary industry/100 million yuan | GDP | China Statistical Yearbook |
Undesired output | Agricultural carbon emissions | CO2 | Calculation results according to the above method |
Variables | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
lnagtfp | 651 | 1.039 | 0.7310 | −0.0787 | 3.1262 |
lner | 651 | −2.1365 | 1.2424 | −9.1145 | 2.8403 |
lnfiscal | 651 | 5.0204 | 1.3596 | 1.5564 | 7.1999 |
lnstruc | 651 | 2.2535 | 0.8668 | −1.2039 | 5.1590 |
lnagrimech | 651 | 1.3719 | 1.5851 | −4.5859 | 4.5726 |
lnedu | 651 | 1.9797 | 0.1661 | 0.8047 | 2.6071 |
lnscale | 651 | −1.5308 | 0.5288 | −3.3354 | −0.6005 |
Variables | Static Dubin Model Model (4) | Static Dubin Mode of Interaction Model (5) | Dynamic Dubin Model Model (6) | Dynamic Dubin Model of Interaction Model (7) |
---|---|---|---|---|
L.lnagtfp | 0.1912 * (1.90) | 0.1723 * (1.71) | ||
lner | −0.0780 *** (−5.58) | −0.0786 *** (−5.58) | −0.0719 * (−5.12) | −0.0720 *** (−5.08) |
lnfiscal | 0.2001 (1.27) | 0.2524 (1.42) | 0.1580 *** (0.97) | 0.1738 (0.94) |
lner × lnfiscal | −0.0232 (−0.58) | −0.0052 (−0.13) | ||
lnstruc | 0.2806 *** (8.82) | 0.2776 *** (8.74) | 0.2881 *** (8.59) | 0.2846 *** (8.50) |
lnagrimech | −0.0146 (−1.17) | −0.0138 (−1.11) | −0.0118 (−0.90) | −0.0111 (−0.85) |
lnedu | −0.1742 * (−1.66) | −0.1572 (−1.47) | −0.0396 (−0.34) | −0.0316 (−0.27) |
lnscale | 0.0059 (0.10) | 0.0032 (0.05) | 0.0133 (0.21) | 0.0106 (0.17) |
W*lner | −0.0919 *** (−2.60) | −0.0935 *** (−2.65) | −0.0628 * (−1.71) | −0.0673 ** (−1.84) |
W*lnfiscal | 1.1103 *** (3.61) | 1.4735 *** (3.94) | 1.2089 *** (3.83) | 1.6199 *** (4.20) |
W*lner × lnfiscal | −0.1266 * (−1.69) | −0.1393 * (0.85) | ||
W*lnstruc | −0.2389 *** (−3.41) | −0.2253 *** (−3.21) | −0.3069 *** (−4.15) | −0.2908 *** (−3.91) |
W*lnagrimech | 0.0217 (0.96) | 0.0232 (1.03) | 0.0163 (0.69) | 0.0177 (0.75) |
W*lnedu | 0.4119 ** (1.94) | 0.4656 ** (2.17) | 0.6944 *** (2.86) | 0.7473 *** (3.07) |
W*lnscale | 0.0507 (0.43) | 0.0407 (0.34) | 0.0060 (0.05) | −0.0055 (−0.44) |
Log-L | −2859.27 | −2859.27 | −580.44 | −533.07 |
ρ | 0.1907 *** (3.62) | 0.1823 *** (3.46) | 0.1341 ** (2.10) | 0.1335 ** (2.09) |
R2 | 0.3638 | 0.3965 | 0.5932 | 0.5838 |
N | 651 | 651 | 620 | 620 |
Control variables and spatial terms | YES | YES | YES | YES |
Individual fixed effects | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES |
Variables | Static of Dubin Model | |||||
---|---|---|---|---|---|---|
Long-Term Effects | Long-Term Effects of Interaction Relationship | |||||
Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | |
lner | −0.0822 *** (−5.57) | −0.1255 *** (−2.91) | −0.2077 *** (−4.12) | −0.0828 *** (−5.60) | −0.1275 *** (−3.33) | −0.2104 *** (−4.69) |
lnfiscal | 0.2459 (1.60) | 1.3430 *** (3.70) | 1.5889 *** (3.82) | 0.3118 ** (1.83) | 1.8113 *** (4.28) | 2.1231 *** (4.53) |
lner × lnfiscal | −0.0280 (−0.69) | −0.1546* (−1.76) | −0.1826 * (−1.87) | |||
lnstruc | 0.2755 *** (8.93) | −0.2132 *** (−2.63) | 0.0622 (0.69) | 0.2733 *** (8.98) | −0.2021 ** (−2.47) | 0.0711 (0.79) |
lnagrimech | −0.0138 (−1.14) | 0.0226 (0.85) | 0.0087 (0.30) | −0.1312 (−1.09) | 0.0221 (0.88) | 0.0090 (0.33) |
lnedu | −0.1544 (−1.44) | 0.4499 * (1.69) | 0.2955 (0.90) | −0.1357 (−1.26) | 0.5352 ** (1.98) | 0.3995 (1.23) |
lnscale | 0.0129 (0.21) | 0.0721 (0.50) | 0.0851 (0.53) | 0.0088 (0.14) | 0.0398 (−1.76) | 0.4868 (0.33) |
Variable | Dynamic Dubin Model | |||||
Long-Term Effects | Long-Term Effects of Interaction Relationship | |||||
Direct Effect | Indirect Effect | Direct Effect | Indirect Effect | Direct Effect | Indirect Effect | |
lner | −0.0799 *** (−5.47) | −0.1224 ** (−2.35) | −0.2024 *** (−3.37) | −0.0794 *** (−5.39) | −0.1178 ** (−0.26) | −0.1972 *** (−3.28) |
lnfiscal | 0.2851 * (1.74) | 1.8118 *** (3.93) | 2.0970 *** (3.89) | 0.3289 * (1.80) | 2.3221 *** (3.97) | 2.6510 *** (4.05) |
lner × lnfiscal | −0.0207 (−0.53) | −0.2006 ** (−1.97) | −0.2214 * (−1.95) | |||
lnstruc | 0.2698 *** (8.11) | −0.2973 *** (−2.79) | −0.0274 (−0.23) | 0.2676 *** (0.81) | −0.2857 *** (−2.95) | −0.0180 (−0.17) |
lnagrimech | −0.0109 (−0.85) | 0.0154 (0.47) | 0.0044 (0.12) | −0.0099 (−0.78) | 0.0219 (0.64) | 0.0119 (0.31) |
lnedu | 0.0256 (0.20) | 0.9742 ** (2.57) | 0.9998 ** (2.15) | 0.0335 (0.26) | 0.9961 *** (2.69) | 1.0296 ** (2.23) |
lnscale | 0.0123 (0.19) | −0.0025 (−0.01) | 0.0097 (0.05) | 0.0097 (0.15) | −0.0040 (−0.02) | 0.0056 (0.03) |
Variables | Stage Heterogeneity Analysis | Regional Heterogeneity Analysis | |||
---|---|---|---|---|---|
2000–2014 Early Stage | 2015–2020 Systematize Stage | East-Middle | East-West | Middle-West | |
L.lngtfp | 0.1233 (1.17) | 0.6049 *** (2.87) | 0.3720 *** (3.02) | 0.0826 (0.75) | 0.1439 (0.12) |
W*lner | −0.0053 (−0.16) | −0.1274 ** (−2.19) | −0.0092 (−2.05) | −0.0441 (−1.18) | −0.0398 (−0.99) |
W*lnfiscal | 0.7801 ** (2.52) | 3.3919 *** (2.16) | 1.5725 *** (3.12) | 1.0188 *** (2.63) | 0.3726 (0.61) |
W*lner × lnfiscal | −0.0422 (−0.58) | −0.7482 * (−1.79) | −0.3354 ** (−2.31) | −0.0977 (−1.32) | 0.0139 (0.12) |
Control variables | Control | Control | Control | Control | Control |
ρ | 0.1915 ** (2.75) | 0.2438 * (1.85) | 0.1647 ** (2.36) | 0.0471 (0.49) | 0.0923 (1.20) |
N | 434 | 155 | 380 | 460 | 400 |
Log-L | −2039.9252 | 105.59 | −2364.6315 | −2025.4008 | −1073.0839 |
R2 | 0.0857 | 0.0511 | 0.1912 | 0.2878 | 0.6239 |
Variables | Replace the Spatial Weight Matrix | Change Estimation Method | Adding Control Variables |
---|---|---|---|
L.lngtfp | 0.1912 * (1.90) | 0.0836 *** (5.26) | 0.1891 * (1.89) |
lner | −0.0719 *** (−5.12) | −0.0253 * (−1.67) | −0.1171 *** (−4.62) |
lnfiscal | 0.1580 (0.97) | 0.4690 * (3.45) | 0.1587 (0.98) |
lnstruc | 0.2881 *** (8.59) | 0.1407 *** (9.34) | 0.2875 *** (8.61) |
lnagrimech | −0.0118 (−0.90) | −0.0275 *** (−2.77) | −0.0125 (−0.96) |
lnedu | −0.0396 (−0.34) | 0.3557 *** (4.44) | −0.0436 (−0.38) |
lnscale | 0.0133 (0.21) | −0.1031 (−4.31) | 0.0135 (0.21) |
lntech | 0.0458 ** (2.13) | ||
W*lner | −0.0628 * (−1.71) | −0.0975 * (−1.81) | |
W*lnfiscal | 1.2089 *** (3.83) | 1.1833 *** (3.76) | |
W*lnstruc | −0.3069 *** (−4.12) | −0.3004 *** (−4.08) | |
W*lnagrimech | 0.0163 (0.69) | 0.0190 (−4.08) | |
W*lnedu | 0.6944 *** (2.86) | 0.6744 *** (2.79) | |
W*lnscale | 0.0060 (0.05) | 0.0353 (0.29) | |
W*lntech | 0.0357 (0.87) | ||
ρ | 0.1341 ** (2.10) | 1.3020 *** (−4.93) | 0.1276 (1.99) |
N | 620 | 620 | 620 |
Log-L | −580.44 | 85.2713 | −721.2347 |
R2 | 0.5932 | 0.9156 | 0.5685 |
Control variables and spatial terms | YES | YES | YES |
Individual fixed effects | YES | YES | YES |
Time fixed effect | YES | YES | YES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Jiang, J.; Du, J. The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity. Appl. Sci. 2022, 12, 11609. https://doi.org/10.3390/app122211609
Xu L, Jiang J, Du J. The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity. Applied Sciences. 2022; 12(22):11609. https://doi.org/10.3390/app122211609
Chicago/Turabian StyleXu, Lingyan, Jing Jiang, and Jianguo Du. 2022. "The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity" Applied Sciences 12, no. 22: 11609. https://doi.org/10.3390/app122211609
APA StyleXu, L., Jiang, J., & Du, J. (2022). The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity. Applied Sciences, 12(22), 11609. https://doi.org/10.3390/app122211609